×

zbMATH — the first resource for mathematics

Zero-one laws and the minimum of a Markov process. (English) Zbl 0381.60062

MSC:
60J25 Continuous-time Markov processes on general state spaces
60J99 Markov processes
60F20 Zero-one laws
60G17 Sample path properties
60G40 Stopping times; optimal stopping problems; gambling theory
60J60 Diffusion processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] David Blackwell and Lester Dubins, Merging of opinions with increasing information, Ann. Math. Statist. 33 (1962), 882 – 886. · Zbl 0109.35704 · doi:10.1214/aoms/1177704456 · doi.org
[2] R. M. Blumenthal, An extended Markov property, Trans. Amer. Math. Soc. 85 (1957), 52 – 72. · Zbl 0084.13602
[3] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. · Zbl 0169.49204
[4] Jean Bretagnolle, Résultats de Kesten sur les processus à accroissements indépendants, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970), Springer, Berlin, 1971, pp. 21 – 36. Lecture Notes in Math., Vol. 191 (French).
[5] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431 – 458. · Zbl 0097.34004
[6] Bert Fristedt, Sample functions of stochastic processes with stationary, independent increments, Advances in probability and related topics, Vol. 3, Dekker, New York, 1974, pp. 241 – 396. · Zbl 0309.60047
[7] I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of random processes, Translated from the Russian by Scripta Technica, Inc, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. · Zbl 0573.60003
[8] G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294 – 319. · Zbl 0070.36601
[9] Harry Kesten, Hitting probabilities of single points for processes with stationary independent increments, Memoirs of the American Mathematical Society, No. 93, American Mathematical Society, Providence, R.I., 1969. · Zbl 0201.19002
[10] Hiroshi Kunita and Takesi Watanabe, Notes on transformations of Markov processes connected with multiplicative functionals, Mem. Fac. Sci. Kyushu Univ. Ser. A 17 (1963), 181 – 191. · Zbl 0144.40203 · doi:10.2206/kyushumfs.17.181 · doi.org
[11] Martin Jacobsen, Splitting times for Markov processes and a generalised Markov property for diffusions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 27 – 43. · Zbl 0288.60064 · doi:10.1007/BF00532861 · doi.org
[12] Jean-François Mertens, Sur la théorie des processus stochastiques, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A495 – A496 (French). · Zbl 0183.46301
[13] P.-A. Meyer, Rectifications à des exposés antérieurs (retournement du temps, intégrales stochastiques), Séminaire de Probabilités, III (Univ. Strasbourg, 1967/68) Springer, Berlin, 1969, pp. 160 – 162 (French).
[14] Paul-André Meyer, Processus de Markov: La frontière de Martin, Lecture Notes in Mathematics, No. 77, Springer-Verlag, Berlin-New York, 1968 (French). · Zbl 0174.49303
[15] P. A. Meyer, R. T. Smythe, and J. B. Walsh, Birth and death of Markov processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 295 – 305. · Zbl 0255.60046
[16] P. W. Millar, Exit properties of stochastic processes with stationary independent increments, Trans. Amer. Math. Soc. 178 (1973), 459 – 479. · Zbl 0268.60065
[17] P. W. Millar, Sample functions at a last exit time, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 2, 91 – 111. · Zbl 0307.60037 · doi:10.1007/BF00535677 · doi.org
[18] Masao Nagasawa, Time reversions of Markov processes, Nagoya Math. J. 24 (1964), 177 – 204. · Zbl 0133.10702
[19] A. O. Pittenger and C. T. Shih, Coterminal families and the strong Markov property, Trans. Amer. Math. Soc. 182 (1973), 1 – 42. · Zbl 0275.60084
[20] B. A. Rogozin, The local behavior of processes with independent increments, Teor. Verojatnost. i Primenen. 13 (1968), 507 – 512 (Russian, with English summary). · Zbl 0164.46802
[21] John B. Walsh, Markov processes and their functionals in duality, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 229 – 246. · Zbl 0248.60054 · doi:10.1007/BF00532535 · doi.org
[22] David Williams, Path decomposition and continuity of local time for one-dimensional diffusions. I, Proc. London Math. Soc. (3) 28 (1974), 738 – 768. · Zbl 0326.60093 · doi:10.1112/plms/s3-28.4.738 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.