×

zbMATH — the first resource for mathematics

Critical perfect graphs and perfect 3-chromatic graphs. (English) Zbl 0376.05047

MSC:
05C99 Graph theory
05C15 Coloring of graphs and hypergraphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berge, C, Farbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind, Wiss. Z. martin-luther-univ. halle-Wittenberg math.-natur. reihe, 114, (1961)
[2] Berge, C, Introduction à la theorie des hypergraphes, (Summer 1971), Université de Montreal, Lecture notes
[3] Chvatal, V, (), Université de Montreal CRM-238
[4] Chvatal, V, On the strong perfect graph conjecture, J. combinatorial theory (B), 20, 139-141, (1976) · Zbl 0293.05117
[5] Fulkerson, D.R, Blocking and anti-blocking pairs of polyhedra, Math. programming, 1, 168-194, (1971) · Zbl 0254.90054
[6] Fulkerson, D.R, Anti-blocking polyhedra, J. combinatorial theory, 12, 50-71, (1972) · Zbl 0227.05015
[7] Fulkerson, D.R, On the perfect graph theorem, (), 69-76 · Zbl 0267.05119
[8] Lovász, L, Normal hypergraphs and the perfect graph conjecture, Discr. math., 2, 253-267, (1972) · Zbl 0239.05111
[9] Lovász, L, A characterization of perfect graphs, J. combinatorial theory (B), 13, 95-98, (1972) · Zbl 0241.05107
[10] Padberg, M, Perfect zero-one matrices, Math. programming, 6, 180-196, (1974) · Zbl 0284.90061
[11] Parthasarathy, K.R; Ravindra, G, The strong perfect graph conjecture is true for K_{1.3}-free graphs, J. combinatorial theory (B), 22, 212-223, (1976) · Zbl 0297.05109
[12] Tucker, A, The strong perfect graph conjecture for planar graphs, Canad. J. math., 25, 103-114, (1973) · Zbl 0251.05102
[13] Tucker, A, Coloring a family of circular arcs, SIAM J. appl. math., 29, 493-502, (1975) · Zbl 0312.05105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.