×

zbMATH — the first resource for mathematics

Some new results on the local stability of the process of capital accumulation. (English) Zbl 0372.90009

MSC:
91B60 Trade models
70G99 General models, approaches, and methods
34D20 Stability of solutions to ordinary differential equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apostol, T.M, Mathematical analysis, (1957), Addison-Wesley Reading, Mass., · Zbl 0126.28202
[2] Arnol’d, V.I, (), 54-123
[3] Arrow, K.J; Block, D; Hurwicz, L, On the stability of the competitive equilibrium, II, Econometrica, 27, 82-109, (1959) · Zbl 0095.34301
[4] Arrow, K.J; Hahn, F.H, General competitive analysis, (1971), Holden-Day San Francisco · Zbl 0311.90001
[5] Arrow, K.J; Hurwicz, L, On the stability of the competitive equilibrium, I, Econometrica, 26, 522-552, (1958) · Zbl 0084.15604
[6] Arrow, K.J; Hurwicz, L; Uzawa, H, Studies in linear and non-linear programming, (1958), Stanford Univ. Press Stanford · Zbl 0091.16002
[7] Arrow, K.J; Kurz, M, Public investment, the rate of return, and optimal fiscal policy, (1970), The John Hopkins Press Baltimore
[8] Benveniste, L.M; Scheinkman, J.A, Duality theory for dynamic optimization models of economics: the continuous time case, () · Zbl 0503.90023
[9] Brock, W.A, The global asymptotic stability of optimal control: A survey of recent results, () · Zbl 0587.90026
[10] Brock, W.A, On existence of weakly maximal programmes in a multisector economy, Rev. econ. studies, 37, 275-280, (1970) · Zbl 0212.23901
[11] Brock, W.A, Some applications of recent results on the asymptotic stability of optimal control to the problem of comparing long-run equilibria, () · Zbl 0587.90026
[12] Brock, W.A, Some results on the uniqueness of steady states in multisector models of optimum growth when future utilities are discounted, Int. econ. rev., 14, 535-559, (1973) · Zbl 0277.90021
[13] Brock, W.A; Burmeister, E, Regular economies and conditions for uniqueness of steady states in optimal multi-sector economic models, Int. econ. rev., 17, 105-120, (1976) · Zbl 0348.90019
[14] Brock, W.A; Scheinkman, J.A, Global asymptotic stability of optimal control systems with applications to the theory of economic growth, J. econ. theory, 12, 164-190, (1976) · Zbl 0348.90018
[15] \scW. A. Brock and J. A. Scheinkman, Global asymptotic stability of optimal control with applications to dynamic economic theory, in “Applications of Control Theory to Economic Analysis” J. D. Pitchford and S. J. Turnovsky, Eds.), North-Holland, Amsterdam, to appear. · Zbl 0411.49003
[16] Burmeister, E; Graham, D.A, Multi-sector economic models with continuous adaptive expectations, Rev. econ. studies, 41, 323-336, (1974) · Zbl 0298.90020
[17] Burmeister, E; Graham, D.A, Price expectations and global stability in economic systems, Automatica, 11, 487-497, (1975) · Zbl 0326.90010
[18] Burmeister, E; Turnovsky, S.J, Capital deepening response in an economy with heterogeneous capital goods, Amer. econ. rev., 62, 842-853, (1972)
[19] Cass, D, Optimum growth in an aggregative model of capital accumulation, Rev. econ. studies, 32, 233-240, (1965)
[20] Cass, D, Duality: A symmetric approach from the Economist’s vantage point, J. econ. theory, 7, 272-295, (1974)
[21] Cass, D; Shell, K, The structure and stability of competitive dynamical systems, J. econ. theory, 12, 31-70, (1976) · Zbl 0348.90039
[22] Courant, R; Hilbert, D, ()
[23] Fleming, W.H; Rishel, R.W, Deterministic and stochastic optimal control, (1975), Springer-Verlag New York · Zbl 0323.49001
[24] Furuya, H; Inada, K, Balanced growth and intertemporal efficiency in capital accumulation, Int. econ. rev., 3, 94-107, (1962)
[25] Gale, D, On optimal development in a multi-sector economy, Rev. econ. studies, 34, 1-18, (1967)
[26] Gal’perin, E.A; Krasovskii, N.N, On the stabilization of stationary motions in nonlinear control systems, J. appl. math. mech., 27, 1521-1546, (1963) · Zbl 0149.05501
[27] Gantmacher, F.R, ()
[28] Hahn, F.H, Equilibrium dynamics with heterogeneous capital goods, Quart. J. econ., 80, 633-646, (1966) · Zbl 0143.22003
[29] Hahn, F.H, On some equilibrium paths, (), 193-206 · Zbl 0135.20404
[30] Hartman, P, Ordinary differential equations, (1964), Wiley New York · Zbl 0125.32102
[31] Kalman, R.E, Contributions to the theory of optimal control, Bol. soc. mat. mexicana, 5, 102-119, (1960) · Zbl 0112.06303
[32] Koopmans, T, On the concept of optimal economic growth, Pontif. acad. sci. scripta varia, 28, 225-300, (1965)
[33] Kurz, M, The general instability of a class of competitive growth processes, Rev. econ. studies, 35, 155-174, (1968) · Zbl 0181.47401
[34] Lagrange, J.L, ()
[35] Liapunov, A.M, ()
[36] Liviatan, N; Samuelson, P.A, Notes on turnpikes: stable and unstable, J. econ. theory, 1, 454-475, (1969)
[37] Lucas, R.E, Optimal investment policy and the flexible accelerator, Int. econ. rev., 8, 78-85, (1967)
[38] McKenzie, L.W, Accumulation programs of maximum utility and the von Neumann facet, (), 353-383
[39] McKenzie, L.W, The Dorfman-Samuelson-solow turnpike theorem, Int. econ. rev., 4, 29-43, (1963) · Zbl 0112.12005
[40] McKenzie, L.W, Turnpike theorems for a generalized Leontief model, Econometrica, 31, 165-180, (1963) · Zbl 0117.15602
[41] McKenzie, L.W, Turnpike theorems with technology and welfare function variable, (), 271-287
[42] McKenzie, L.W, Turnpike theory, () · Zbl 0216.54003
[43] Magill, M.J.P, Capital accumulation under random disturbances, (December 1972), Department of Economics, Indiana University, mimeo-graphed
[44] \scM. J. P. Magill, A local analysis of n-sector capital accumulation under uncertainty, J. Econ. Theory\bf15, in press. · Zbl 0382.90028
[45] Magill, M.J.P, On a general economic theory of motion, (1970), Springer-Verlag New York · Zbl 0212.23701
[46] Magill, M.J.P, The preferability of investment through a mutual fund, J. econ. theory, 13, 264-271, (1976) · Zbl 0361.90002
[47] Magill, M.J.P; Constantinides, G.M, Portfolio selection with transactions costs, J. econ. theory, 13, 245-263, (1976) · Zbl 0361.90001
[48] Mortensen, D.T, Generalized costs of adjustment and dynamic factor demand theory, Econometrica, 41, 657-665, (1973) · Zbl 0295.90012
[49] Peleg, B; Ryder, H.E, The modified Golden rule of a multi-sector economy, J. math. econ., 1, 193-198, (1974) · Zbl 0297.90008
[50] Poincaré, H, Oeuvres de Henri Poincaré, (), 7, 40-140, (1885), Tome VII
[51] Poincaré, H, Œuvres de Henri Poincaré, (), 13, 262-479, (1890), Tome VII
[52] Radner, R, Paths of economic growth that are optimal with regard only to final states: a turnpike theorem, Rev. econ. studies, 28, 98-104, (1961)
[53] Ramsey, F.P, A mathematical theory of saving, Econ. J., 38, 543-559, (1928)
[54] Rockafellar, R.T, Saddle points of Hamiltonian systems in convex problems of Lagrange, J. optimization theory appl., 12, 367-390, (1973) · Zbl 0248.49016
[55] Rockafellar, R.T, Saddle points of Hamiltonian systems in convex Lagrange problems having a non-zero discount rate, J. econ. theory, 12, 71-113, (1976) · Zbl 0333.90007
[56] Ryder, H.E; Heal, G.M, Optimum growth with intertemporally dependent preferences, Rev. econ. studies, 40, 1-31, (1973) · Zbl 0261.90007
[57] Samuelson, P.A, A catenary turnpike theorem involving consumption and the Golden rule, Amer. econ. rev., 55, 136-146, (1965)
[58] Samuelson, P.A, Efficient paths of capital accumulation in terms of the calculus of variations, (), 77-88
[59] Samuelson, P.A, Foundations of economic analysis, (1947), Harvard Univ. Press Cambridge, Mass., · Zbl 0031.17401
[60] Samuelson, P.A, The general saddlepoint property of optimal control motion, J. econ. theory, 5, 102-120, (1972)
[61] Samuelson, P.A; Solow, R.M, A complete capital model involving heterogeneous capital goods, Quart. J. econ., 70, 536-562, (1956)
[62] Scheinkman, J.A, On optimal steady states of n-sector growth models when utility is discounted, J. econ. theory, 12, 11-30, (1976) · Zbl 0341.90017
[63] Shell, K, On competitive dynamical systems, (), 449-476
[64] Shell, K; Stiglitz, J.E, The allocation of investment in a dynamic economy, Quart. J. econ., 81, 592-609, (1967)
[65] Smale, S, Global analysis and economics VI: geometric analysis of Pareto optima and price equilibria under classical hypotheses, J. math. econ., 3, 1-14, (1976) · Zbl 0348.90017
[66] Thom, R, Structural stability and morphogenesis, (1975), Benjamin Reading, Mass.,
[67] Treadway, A.B, The rational multivariate flexible accelerator, Econometrica, 39, 845-855, (1971) · Zbl 0243.90010
[68] Zeeman, E.C, The classification of elementary catastrophes of codimension ⩽5, () · Zbl 0675.58022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.