zbMATH — the first resource for mathematics

Projection and restriction methods in geometric programming and related problems. (English) Zbl 0369.90115

90C30 Nonlinear programming
Full Text: DOI
[1] Duffin, R. J., Peterson, E. L., andZener, C.,Geometric Programming?Theory and Applications, John Wiley and Sons, New York, New York, 1967. · Zbl 0171.17601
[2] Abrams, R.,Consistency, Superconsistency and Dual Degeneracy in Geometric Programming, Operations Research, Vol. 24, pp. 325-335, 1976. · Zbl 0348.90119 · doi:10.1287/opre.24.2.325
[3] Williams, A. C.,Complementary Theorems for Linear Programming, SIAM Review, Vol. 12, pp. 135-137, 1970. · Zbl 0193.18606 · doi:10.1137/1012015
[4] Shefi, A.,Reduction of Linear Inequality Constraints and Determination of All Feasible Extreme Points, Stanford University, PhD Dissertation, 1969.
[5] Luenberger, D. G.,Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Reading, Massachusetts, 1973. · Zbl 0297.90044
[6] Rockafellar, R. T.,Convex Functions and Dual Extremum Problems, Harvard University, PhD Dissertation, 1963.
[7] Peterson, E. L.,Fenchel’s Hypothesis and the Existence of Recession Directions in Convex Programming, Northwestern University, Center for Mathematical Studies in Economics and Management Science, Discussion Paper No. 152, 1976.
[8] Wu, C. T.,Reduction and Restriction Methods for Simplifying and Solving Nonlinear Programming Problems, Northwestern University, PhD Dissertation, 1975.
[9] Abrams, R.,Projections of Convex Programs with Unattained Infima, SIAM Journal on Control, Vol. 13, pp. 706-718, 1975. · Zbl 0297.90071 · doi:10.1137/0313040
[10] Peterson, E. L., andEcker, J. G.,Geometric Programming: Duality in Quadratic Programming and Lp-Approximation, III, Degenerate Programs, Journal of Mathematical Analysis and Applications, Vol. 24, pp. 365-383, 1970. · Zbl 0183.49003 · doi:10.1016/0022-247X(70)90085-5
[11] Abrams, R.,Degenerate Quadratic Programming and Lp-Approximation Problems, Journal of Mathematical Analysis and Applications, Vol. 55, No. 2, 1976. · Zbl 0372.90105
[12] Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1969. · Zbl 0186.23901
[13] Stoer, J., andWitzgall, C.,Convexity and Optimization in Finite Dimensions, I, Springer-Verlag, New York, New York, 1970. · Zbl 0203.52203
[14] Peterson, E. L.,Symmetric Duality for Generalized Unconstrained Geometric Programming, SIAM Journal of Applied Mathematics, Vol. 19, pp. 487-526, 1970. · Zbl 0205.48001 · doi:10.1137/0119049
[15] Abrams, R. A., andKerzner, L.,A Simplified Test for Optimality, Journal of Optimization Theory and Applications (to appear).
[16] Magnanti, T. L.,Fenchel and Lagrange Duality Are Equivalent, Mathematical Programming, Vol. 7, pp. 253-258, 1974. · Zbl 0296.90037 · doi:10.1007/BF01585523
[17] Ben-Tal, A., Ben-Israel, A., andZlobec, S.,Characterization of Optimality in Convex Programming Without a Constraint Qualification, Journal of Optimization Theory and Applications, Vol. 20, pp. 417-437, 1976. · Zbl 0327.90025 · doi:10.1007/BF00933129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.