×

zbMATH — the first resource for mathematics

Convexity conditions and existence theorems in nonlinear elasticity. (English) Zbl 0368.73040

MSC:
74B20 Nonlinear elasticity
74A20 Theory of constitutive functions in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A.R. Amir-Moéz [1] Extreme properties of eigenvalues of a Hermitian transformation and singular values of sum and product of linear transformations, Duke Math. J., 23 (1956), 463–476. · Zbl 0071.01601
[2] A.R. Amir-Moéz & A. Horn [1] Singular values of a matrix, Amer. Math. Monthly (1958), 742–748. · Zbl 0084.01801
[3] S.S. Antman [1] Equilibrium states of nonlinearly elastic rods, J. Math. Anal. Appl. 23 (1968), 459–470. · Zbl 0165.27704
[4] S.S. Antman [2]S.S. Antman Existence of solutions of the equilibrium equations for nonlinearly elastic rings and arches, Indiana Univ. Math. J. 20 (1970) 281–302. · Zbl 0223.73029
[5] S.S. Antman [3] Existence and nonuniqueness of axisymmetric equilibrium states of nonlinearly elastic shells, Arch. Rational Mech. Anal. 40 (1971), 329–372. · Zbl 0254.73072
[6] S.S. Antman [4] ”The theory of rods”, in Handbuch der Physik, Vol VIa/2, ed. C. Truesdell, Springer, Berlin, 1972.
[7] S.S. Antman [5] Monotonicity and invertibility conditions in one-dimensional nonlinear elasticity, in ”Nonlinear Elasticity”, ed. R.W. Dickey, Academic Press, New York, 1973.
[8] S.S. Antman [6] Nonuniqueness of equilibrium states for bars in tension, J. Math. Anal. Appl. 44 (1973), 333–349. · Zbl 0267.73031
[9] S.S. Antman [7] Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells, Arch. Rational Mech. Anal. 61 (1976), 307–351.
[10] S.S. Antman [8] Ordinary differential equations of nonlinear elasticity II: Existence and regularity theory for conservative boundary value problems, Arch. Rational Mech. Anal. 61 (1976), 353–393.
[11] J.M. Ball [1] Weak continuity properties of mappings and semigroups, Proc. Roy. Soc. Edin (A) 72 (1973/4), 275–280.
[12] J.M. Ball [2] On the calculus of variations and sequentially weakly continuous maps, Proc. Dundee Conference on Ordinary and Partial Differential Equations 1976, Springer Lecture Notes in Mathematics, to appear. · Zbl 0348.49004
[13] M.F. Beatty [1] Stability of hyperelastic bodies subject to hydrostatic loading, Non-linear Mech. 5 (1970), 367–383. · Zbl 0227.73073
[14] I. Beju [1] Theorems on existence, uniqueness and stability of the solution of the place boundary-value problem, in statics, for hyperelastic materials, Arch. Rational Mech. Anal., 42 (1971), 1–23. · Zbl 0224.73015
[15] I. Beju [2] The place boundary-value problem in hyperelastostatics, I. Differential properties of the operator of finite elastostatics, Bull. Math. Soc. Sci. Math. R.S. Roumanie 16 (1972), 132–149, II. Existence, uniqueness and stability of the solution, ibid. 283–313. · Zbl 0288.73002
[16] H. Busemann, G. Ewald & G.C. Shephard [1] Convex bodies and convexity on Grassman cones, Parts I–IV, Math. Ann., 151 (1963), 1–41. · Zbl 0112.37301
[17] H. Busemann & G.C. Shephard [1] Convexity on nonconvex sets, Proc. Coll. on Convexity, Copenhagen, Univ. Math. Inst., Copenhagen, (1965), 20–33. · Zbl 0141.19901
[18] C. Cattaneo [1] Su un teorema fondamentale nella teoria delle onde di discontinuità, Atti. Accad. Sci. Lincei Rend., Cl. Sci. Fis. Mat. Nat. Ser 8, 1 (1946), 66–72. · Zbl 0063.00744
[19] L. Cesari [1] Closure theorems for orientor fields and weak convergence, Arch. Rational Mech. Anal. 55 (1974), 332–356. · Zbl 0296.49029
[20] L. Cesari [2] Lower semicontinuity and lower closure theorems without seminormality conditions, Annali Mat. Pura. Appl. 98 (1974), 381–397. · Zbl 0281.49006
[21] L. Cesari [3] A necessary and sufficient condition for lower semicontinuity, Bull. Amer. Math. Soc. 80 (1974), 467–472. · Zbl 0287.49003
[22] A. Clebsch [1] Über die zweite Variation vielfacher Integrale, J. Reine Angew. Math., 56 (1859), 122–149. · ERAM 056.1479cj
[23] B.D. Coleman & W. Noll [1] On the thermostatics of continuous media, Arch. Rational Mech. Anal., 4 (1959), 97–128. · Zbl 0231.73003
[24] T.K. Donaldson & N.S. Trudinger [1] Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8 (1971), 52–75. · Zbl 0216.15702
[25] P. Duhem [1] Recherches sur l’élasticité, troisième partie. La stabilité des milieux élastiques, Ann. Ecole Norm., 22 (1905), 143–217. Reprinted Paris, Gauthier-Villars 1906. · JFM 36.0852.04
[26] N. Dunford & J.T. Schwartz [1] ”Linear operators”, Pt. 1., Interscience, New York 1958. · Zbl 0084.10402
[27] D.G.B. Edelen [1] The null set of the Euler-Lagrange operator, Arch. Rational Mech. Anal., 11 (1962), 117–121. · Zbl 0125.33002
[28] D.G.B. Edelen [2] ”Non local variations and local invariance of fields”, Modern analytic and computational methods in science and engineering No. 19, Elsevier, New York, 1969. · Zbl 0194.42401
[29] I. Ekeland & R. Témam [1] ”Analyse convexe et problèmes variationnels”, Dunod, Gauthier-Villars, Paris, 1974. · Zbl 0281.49001
[30] J.L. Ericksen [1] Nilpotent energies in liquid crystal theory, Arch. Rational Mech. Anal., 10 (1962), 189–196. · Zbl 0109.23002
[31] J.L. Ericksen [2] Loading devices and stability of equilibrium, in ”Nonlinear Elasticity”, ed. R.W. Dickey, Academic Press, New York 1973.
[32] J.L. Ericksen [3] Equilibrium of bars, J. of Elasticity, 5 (1975), 191–201. · Zbl 0324.73067
[33] J.L. Ericksen [4] Special topics in elastostatics, to appear.
[34] G. Fichera [1] Existence theorems in elasticity, in Handbuch der Physik, ed. C. Truesdell, Vol. VIa/2, Springer, Berlin, 1972. · Zbl 0269.73028
[35] R.L. Fosdick & R.T. Shield [1] Small bending of a circular bar superposed on finite extension or compression, Arch. Rational Mech. Anal., 12 (1963), 223–248. · Zbl 0108.37102
[36] A. Fougères [1] Thesis, Besançon, 1972.
[37] A. Friedman [1] ”Partial differential equations”, Holt Rinehart and Winston, New York, 1969.
[38] J-P. Gossez [1] Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190 (1974), 163–204.
[39] L.M. Graves [1] The Weierstrass condition for multiple integral variation problems, Duke Math. J., 5 (1939), 656–660. · Zbl 0021.41403
[40] A.E. Green & W. Zerna [1] ”Theoretical elasticity”, 2nd edition, Oxford Univ. Press, 1968. · Zbl 0155.51801
[41] J. Hadamard [1] Sur une question de calcul des variations, Bull. Soc. Math. France, 30 (1902), 253–256. · JFM 33.0387.02
[42] J. Hadamard [2] ”Leçons sur la propagation des ondes”, Paris, Hermann, 1903. · JFM 34.0793.06
[43] J. Hadamard [3] Sur quelques questions de calcul des variations, Bull. Soc. Math de France, 33 (1905), 73–80. · JFM 36.0430.02
[44] R. Hill [1] On uniqueness and stability in the theory of finite elastic strain, J. Mech. Phys. Solids 5 (1957), 229–241. · Zbl 0080.18004
[45] R. Hill [2] On constitutive inequalities for simple materials, I, J. Mech. Phys. Solids, 16 (1968), 229–242. · Zbl 0162.28702
[46] R. Hill [3] Constitutive inequalities for isotropic elastic solids under finite strain. Proc. Roy. Soc. London A314 (1970), 457–472 · Zbl 0201.26601
[47] J.T. Holden [1] Estimation of critical loads in elastic stability theory, Arch. Rational Mech. Anal., 17 (1964), 171–183. · Zbl 0125.13005
[48] R.J. Knops & E.W. Wilkes [1] ”Theory of elastic stability”, in Handbuch der Physik, Vol. VIa/3, ed. C. Truesdell, Springer, Berlin, 1973. · Zbl 0377.73060
[49] J.K. Knowles & E. Sternberg [1] On the ellipticity of the equations of nonlinear elastostatics for a special material, J. of Elasticity, 5 (1975), 341–361. · Zbl 0323.73010
[50] M.A. Krasnosel’skii & Ya.B. Rutickii [1] ”Convex functions and Orlicz spaces”, trans. L.F. Boron, Nordhoff, Groningen, 1961.
[51] M-T. Lacroix [1] Espaces de traces des espaces de Sobolev-Orlicz, J. de Math. Pures Appl., 53 (1974), 439–458. · Zbl 0275.46027
[52] E.J. McShane [1] On the necessary condition of Weierstrass in the multiple integral problem of the calculus of variations, Annals of Math. Series 2, 32 (1931), 578–590. · Zbl 0003.06002
[53] N.G. Meyers [1] Quasi-convexity and lower semicontinuity of multiple variational integrals of any order, Trans. Amer. Math. Soc., 119 (1965), 125–149.
[54] L. Mirsky [1] On the trace of matrix products, Math. Nach. 20 (1959), 171–174. · Zbl 0136.24901
[55] L. Mirsky [2] A trace inequality of John von Neumann, Monat. für Math., 79 (1975), 303–306. · Zbl 0316.15009
[56] J.J. Moreau [1] Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, Collège de France, 1966–1967.
[57] C.B. Morrey, Jr. [1] Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53. · Zbl 0046.10803
[58] C.B. Morrey, Jr. [2] ”Multiple Integrals in the Calculus of Variations”, Springer, Berlin, 1966. · Zbl 0142.38701
[59] J. Nečas [1] ”Les méthodes directes en théorie des équations elliptiques”, Masson, Paris, 1967.
[60] P. Niederer [1] A molecular study of the mechanical properties of arterial wall vessels, Z.A.M.P., 25 (1974), 565–578.
[61] J.T. Oden [1] Approximations and numerical analysis of finite deformations of elastic solids, in ”Nonlinear Elasticity” ed. R. W. Dickey, Academic Press, New York, 1973.
[62] R.W. Ogden [1] Compressible isotropic elastic solids under finite strain – constitutive inequalities, Quart, J. Mech. Appl. Math., 23 (1970), 457–468. · Zbl 0215.57401
[63] R.W. Ogden [2] Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. London A326 (1972), 565–584. · Zbl 0257.73034
[64] R.W. Ogden [3] Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids, Proc. Roy. Soc. London A328 (1972), 567–583. · Zbl 0245.73032
[65] A. Phillips [1] Turning a surface inside out, Scientific American, May 1966.
[66] Y. G. Reshetnyak [1] On the stability of conformal mappings in multidimensional spaces, Sibirskii Math. 8 (1967), 91–114.
[67] Y. G. Reshetnyak [2] Stability theorems for mappings with bounded excursion, Sibirskii Math. 9 (1968), 667–684.
[68] R. S. Rivlin [1] Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure homogeneous deformation, Phil. Trans. Roy. Soc. London 240 (1948), 491–508.
[69] R.S. Rivlin [2] Some restrictions on constitutive equations, Proc. Int. Symp. on the Foundations of Continuum Thermodynamics, Bussaco, 1973.
[70] R.S. Rivlin [3] Stability of pure homogeneous deformations of an elastic cube under dead loading, Quart. Appl. Math. 32 (1974), 265–272.
[71] R.T. Rockafellar [1] ”Convex analysis”, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[72] H. Rund [1] ”The Hamilton-Jacobi theory in the calculus of variations”, Van Nostrand, London, 1966. · Zbl 0141.10602
[73] H. Rund [2] Integral formulae associated with the Euler-Lagrange operators of multiple integral problems in the calculus of variations, Aequationes Math., 11 (1974), 212–229. · Zbl 0293.49001
[74] L. Schwartz [1] ”Théorie des distributions”, Hermann, Paris, 1966.
[75] C.B. Sensenig [1] Instability of thick elastic solids, Comm. Pure Appl. Math., 17 (1964), 451–491. · Zbl 0127.15001
[76] M.J. Sewell [1] On configuration-dependent loading, Arch. Rational Mech. Anal., 23 (1967), 327–351. · Zbl 0166.43406
[77] F. Sidoroff [1] Sur les restrictions à imposer à l’énergie de déformation d’un matériau hyperélastique, C.R.Acad. Sc. Paris A, 279 (1974), 379–382. · Zbl 0313.73038
[78] E. Silverman [1] Strong quasi-convexity, Pacific J. Math., 46 (1973), 549–554. · Zbl 0252.49005
[79] S. Smale [1] A classification of immersions of the two-sphere, Trans. Amer. Math. Soc., 90, (1959), 281–290. · Zbl 0089.18102
[80] F. Stoppelli [1] Un teorema di esistenza e di unicità relativo allé equazioni dell’elastostatica isoterma per deformazioni finite, Ricerche Matematica, 3 (1954), 247–267. · Zbl 0058.39701
[81] R. Temam [1] On the theory and numerical analysis of the Navier-Stokes equations, Lecture notes in Mathematics No. 9, University of Maryland. · Zbl 0273.35002
[82] F.J. Terpstra [1] Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung, Math. Ann. 116 (1938), 166–180. · Zbl 0019.35203
[83] C.M. Theobald [1] An inequality for the trace of the product of two symmetric matrices, Math. Proc. Camb. Phil. Soc., 77 (1975), 265–268. · Zbl 0302.15021
[84] R.C. Thompson [1] Singular value inequalities for matrix sums and minors, Linear Algebra and Appl., 11 (1975), 251–269. · Zbl 0343.15008
[85] R.C. Thompson & L.J. Freede [1] On the eigenvalues of sums of Hermitian matrices, Linear Algebra and Appl., 4 (1971), 369–376. · Zbl 0228.15005
[86] R.C. Thompson & L.J. Freede [2] On the eigenvalues of sums of Hermitian matrices II, Aequationes Math., 5 (1970), 103–115. · Zbl 0228.15006
[87] R.C. Thompson & L.J. Freede [3] Eigenvalues of sums of Hermitian matrices III, J. Research Nat. Bur. Standards B, 75B (1971), 115–120. · Zbl 0265.15009
[88] L.R.G. Treloar [1] ”The physics of rubber elasticity”, 3rd edition, Oxford Univ. Press, Oxford, 1975. · Zbl 0347.73042
[89] C. Truesdell [1] The main open problem in the finite theory of elasticity (1955), reprinted in ”Foundations of Elasticity Theory”, Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965.
[90] C. Truesdell & W. Noll [1] ”The non-linear field theories of mechanics”, in Handbuch der Physik Vol. III/3, ed. S. Flügge, Springer, Berlin, 1965. · Zbl 0137.19501
[91] W. van Buren [1] ”On the existence and uniqueness of solutions to boundary value problems in finite elasticity”, Thesis, Department of Mathematics, Carnegie-Mellon University, 1968. Research Report 68-ID7-MEKMA-RI, Westinghouse Research Laboratories, Pittsburgh, Pa. 1968.
[92] L. van Hove [1] Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues, Proc. Koninkl. Ned. Akad. Wetenschap 50 (1947), 18–23. · Zbl 0029.26802
[93] L. van Hove [2] Sur le signe de la variation seconde des intégrales multiples à plusieurs fonctions inconnues, Koninkl. Belg. Acad., Klasse der Wetenschappen, Verhandelingen, 24 (1949). · Zbl 0036.34501
[94] J. von Neumann [1] Some matrix-inequalities and metrization of matric-space, Tomsk Univ. Rev. 1 (1937), 286–300. Reprinted in Collected Works Vol. IV Pergamon, Oxford, 1962. · JFM 63.0037.03
[95] C.-C. Wang & C. Truesdell [1] ”Introduction to rational elasticity,” Noordhoff, Groningen, 1973. · Zbl 0308.73001
[96] Z. Wesołowski [1] ”Zagadnienia dynamiczne nieliniowej teorii sprezystosci”, Polska Akad. Nauk. IPPT, Warsaw, 1974.
[97] E.W. Wilkes [1] On the stability of a circular tube under end thrust, Quart. J. Mech. Appl. Math. 8 (1955), 88–100. · Zbl 0064.18602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.