zbMATH — the first resource for mathematics

Dynamics of pattern formation in lateral-inhibition type neural fields. (English) Zbl 0367.92005

92B05 General biology and biomathematics
Full Text: DOI
[1] Amari,S.: Characteristics of randomly connected threshold element networks and network systems. Proc. IEEE 59, 35-47 (1971)
[2] Amari,S.: Characteristics of random nets of analog neuron-like elements. IEEE Trans. on Syst. Man and Cybernetics SMC-2, 643-657 (1972a) · Zbl 0247.92006
[3] Amari,S.: Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans. Computers C 21, 1197-1206 (1972b) · Zbl 0245.94024
[4] Amari,S.: A method of statistical neurodynamics. Kybernetik 14, 201-215 (1974) · Zbl 0277.92003
[5] Amari,S.: Homogeneous nets of neuron-like elements. Biol. Cybernetics 17, 211-220 (1975) · Zbl 0302.92004
[6] Amari,S., Yoshida,K., Kanatan,K.: Mathematical foundations of statistical neurodynamics. Siam J. Appl. Math. 33 (1977)
[7] Amari,S., Arbib,M.A.: Competition and cooperation in neural nets. In: Systems neuroscience, Metzler,J. (ed.). New York: Academic Press 1977
[8] Arbib,M.: Segmentations, schemas and cooperative computation. In: Studies in biomathematics. Levin,S., ed. Rhode Island Math. Assoc. of America 1976
[9] Beurle,R.L.: Properties of a mass of cells capable of regenerating pulses. Trans. Roy. Soc. London B 240, 55-94 (1956)
[10] Boylls,C.C.: A theory of cerebellar function with applications to locomotion, I. The physiological role of climbing fiber inputs in anterior lobe operation. COINS Technical Rep. 75C-6 Univ. Mass. at Amhevst (1975)
[11] Coleman,B.P.: Mathematical theory of lateral sensory inhibition. Arch. Rat. Mach. Analys. 43, 79-100 (1971) · Zbl 0284.92003
[12] Dev,P.: Perception of depth surfaces in random-dot stereograms: a neural model. Int. J. Man-Mach. Stud. 7, 511-528 (1975) · Zbl 0309.68087
[13] Didday,R.L.: The simulation and modelling of distributed information processes in the frog visual system. Tech. Rep. No. 6112-1, Stanford University Center for Systems Research (1970)
[14] Ellias,S.A., Grossberg,S.: Pattern formation, contrast control and oscillations in the short-term memory of shunting on-center off-surround networks. Biol. Cybernetics 20, 69-98 (1975) · Zbl 0327.92001
[15] Farley,B.G., Clark,W.A.: Activity in networks of neuron-like elements. Proc. 4th London Symp. on Inf. Theory. Cherry,C., ed. London: Butterworths 1961
[16] Grossberg,S.: On the development of feature detectors in the visual cortex with application to learning and reaction-diffusion systems. Biol. Cybernetics 21, 145-158 (1976) · Zbl 0321.92023
[17] Griffith,J.S.: A field theory of neural nets. I. Bull. Math. Biophys. 27, 111-120 (1963) · Zbl 0129.34804
[18] Griffith,J.S.: A field theory of neural nets. II. Bull. Math. Biophys. 27, 187-195 (1965) · Zbl 0139.14103
[19] Kilmer,W.K., McCulloch,W.S., Blum,J.: A model of the vertebrate central command system. Int. J. Man-Mach. Stud. 1, 279-309 (1969)
[20] Levin,S.A., ed.: Some mathematical questions in biology. VI. Rhode Island AMS 1974 · Zbl 0294.00012
[21] Lieblich,I., Amari,S.: A first approximation model for amygdaloid kindling phenomenon. In: Systems Neuroscience, Metzler,J. (ed.) New York: Academic Press 1977
[22] Maginu,K.: Reaction-diffusion equation describing morphogenesis. Math. Biosci. 27, 17-98 (1975) · Zbl 0337.92003
[23] Montalvo,F.S.: Consensus versus competition in neural network: a cooperative analysis of three models. Int. J. Man-Mach. Stud. 7, 333-346 (1975) · Zbl 0311.92002
[24] Oguzt√∂reli,M.N.: On the activities in a continuous neural network. Biol. Cybernetics 18, 41-48 (1975) · Zbl 0304.92009
[25] Stanley,J.C.: Simulation studies of a temporal sequence memory model. Biol. Cybernetics 24, 121-137 (1976)
[26] Turing,A.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London B-237, 32-72 (1952) · Zbl 1403.92034
[27] Wiener,N., Rosenblueth,A.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. (Mexico) 16, 204-265 (1946) · Zbl 0063.08249
[28] Wilson,H.R., Cowan,J.D.: Excitatory and inhibitory interactions in local populations of model neurons. Biophysical J. 12, 1-24 (1972)
[29] Wilson,H.R., Cowan,J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55-80 (1973) · Zbl 0281.92003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.