×

zbMATH — the first resource for mathematics

Nonrelativistic quantum mechanics as a noncommutative Markov process. (English) Zbl 0367.60119

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J25 Continuous-time Markov processes on general state spaces
46N99 Miscellaneous applications of functional analysis
47C99 Individual linear operators as elements of algebraic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Accardi, L, On the non-commutative markof property, Funct. anal. appl., 9, 1, (1975), (in russian)
[2] Accardi, L, Non commutative markof chains, (), to appear
[3] Davies, E.B, On the repeated measurement of continuous observables in quantum mechanics, J. funct. anal., 6, 318-346, (1970) · Zbl 0198.59901
[4] Dirac, P.A.M, The principles of quantum mechanics, (1958), Clarendon Press · Zbl 0080.22005
[5] Dirac, P.A.M, Lectures on quantum field theory, (1966), Belfer Graduate School of Science, Yeshiva University New York · Zbl 0033.09303
[6] Dobruscin, R.L, Description of a stochastic field by means of its conditional probabilities and the condition of its regularity, Prob. theory appl., 13, 201-229, (1968), (in russian) · Zbl 0184.40403
[7] Doob, J.L, Stochastic processes, (1967), John Wiley and Sons New York
[8] Feller, W, ()
[9] Feynman, R; Hibbs, Quantum mechanics and path integral, (1965), McGraw-Hill New York · Zbl 0176.54902
[10] {\scV. Gorini, A. Kossakowski, and E. C. G. Sudarshan}, Completely positive dynamical semi-groups of n-level systems, Preprint, University of Texas at Austin.
[11] Guerra, F; Rosen, L; Simon, B, The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics, Ann. math., 101, 1, 111-189, (1975)
[12] Haag, R; Kastler, D, An algebraic approach to quantum field theory, J. math. phys., 5, 848-861, (1964) · Zbl 0139.46003
[13] Hille, E; Phillips, R.S, Functional analysis and semi-groups, (1957), American Math. Soc. Providence
[14] {\scR. V. Kadison}, Transformations of states in operator theory and dynamics, Topology, {\bf3}, Suppl. · Zbl 0129.08705
[15] Loeve, M, Probability theory, (1963), D. van Nostrand Company New York · Zbl 0108.14202
[16] Mackey, G.W, Mathematical foundations of quantum mechanics, (1963), W. A. Benjamin · Zbl 0114.44002
[17] {\scG. W. Mackey}, Group representations, (to appear). · Zbl 0136.11502
[18] Nelson, E, Feynman integrals and the Schrödinger equation, J. math. phys., 5, 3, 332-343, (1964) · Zbl 0133.22905
[19] Nelson, E, Derivation of the Schrödinger equation from Newton mechanics, Phys. rev., 150, 4, 1079-1085, (1966)
[20] Nelson, E, Quantum fields and markof fields, ()
[21] Piron, C, Survey of general quantum physics, Found. phys., 2, 3, (Oct. 1972)
[22] Sakai, S, C∗-algebras and W∗-algebras, (1971), Springer Verlag Berlin, New York, Heidelberg · Zbl 0219.46042
[23] Segal, I.E, Abstract probability spaces and a theorem of kolmogorof, Amer. J. math., 76, 721-732, (1954) · Zbl 0056.12301
[24] Segal, I.E, Algebraic integration theory, Bull. amer. math. soc., 419-489, (1965) · Zbl 0135.17402
[25] Segal, I.E, Distributions in Hilbert space and canonical system of operators, Trans. amer. math. soc., 88, 12-41, (1958) · Zbl 0099.12104
[26] Segal, I.E, A non-commutative extension of abstract integration, Ann. math., 57, 401-457, (1953) · Zbl 0051.34201
[27] Segal, I.E, Mathematical problems of relativistic physics, (1963), Amer. Math. Soc. Providence · Zbl 0112.45307
[28] Størmer, E, Positive linear maps of operator algebras, Acta math., 110, 223-278, (1963) · Zbl 0173.42105
[29] Takeda, Z, Inductive limit and infinite direct product of operator algebras, Tohoku math. J., 7, 67-86, (1955) · Zbl 0065.34903
[30] Varadarajan, V.S, ()
[31] {\scJ. von Neumann, D. Hilbert, and L. Nordheim}, Über die Grundlagen der Quantenmechanik, In “J. von Neumann, Coll. Works,” Pergamon Press, Vol. I, pp. 104-133.
[32] {\scJ. von Neumann}, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik, In “J. von Neumann, Coll. Works,” Vol. 1, Pergamon Press, New York, pp. 208-235.
[33] {\scJ. von Neumann}, Thermodinamik Quantenmechanisher Gesamtheiten, In “J. von Neumann, Coll. Works,” Vol. I, Pergamon Press, New York, pp. 236-254.
[34] von Neumann, J, Mathematical foundations of quantum mechanics, (1955), Princeton University Press Princeton
[35] {\scJ. von Neumann}, Einige Satze über messbare Abbildunger, In “J. von Neumann, Coll. Works,” Vol. II, Pergamon Press, pp. 294-306.
[36] Weyl, H, The theory of groups and quantum mechanics, (1950), Dover Publications New York · Zbl 0041.25401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.