×

zbMATH — the first resource for mathematics

Integral averaging and bifurcation. (English) Zbl 0367.34033

MSC:
37-XX Dynamical systems and ergodic theory
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C30 Manifolds of solutions of ODE (MSC2000)
34G99 Differential equations in abstract spaces
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] {\scJ. C. Alexander and J. A. Yorke}, Global bifurcation of periodic orbits, Amer. J. Math., to appear. · Zbl 0386.34040
[2] Andronov, A.; Chaikin, C.E., Theory of oscillations, (1949), Princeton Univ. Press Princeton, N.J.,
[3] {\scD. G. Aronson}, to appear.
[4] Brunovsky, P., On one parameter families of diffeomorphisms, Comment. math. univ. carolinae, 11, 559-582, (1970) · Zbl 0202.23104
[5] Bruslinskaya, N.N., Qualitative integration of a system of n differential equations in a region containing a singular point and a limit cycle, Dokl. akad. nauk SSSR, 139, 9-12, (1961)
[6] Chafee, N.N., The bifurcation of one or more closed orbits from an equilibrium points of an autonomous differential systems, J. differential equations, 4, 661-679, (1968) · Zbl 0169.11301
[7] Chafee, N.N., A bifurcation problem for a functional differential equation of finitely retarded type, J. math. anal. appl., 35, 312-348, (1971) · Zbl 0214.09806
[8] Chow, S.N.; Mallet-Paret, J.; Hale, J.K., Applications of generic bifurcation, I, Arch. rational mech. anal., 59, 159-188, (1975) · Zbl 0328.47036
[9] Chow, S.N.; Mallet-Paret, J.; Hale, J.K., Applications of generic bifurcation, II, Arch. rat. mech. anal., 62, 209-235, (1976) · Zbl 0346.47050
[10] Cooke, K.; Yorke, J.A., Some equations modelling growth processes and gonorrhea epidemics, Math. biosci., 16, 75-101, (1973) · Zbl 0251.92011
[11] {\scJ. R. Dorroh and J. E. Marsden}, Smoothness of nonlinear semigroups, J. Functional Analysis, to appear.
[12] {\scH. I. Freedman}, On a bifurcation theorem of Hopf and Friedrichs, to appear. · Zbl 0371.34027
[13] Friedrichs, K.O., Advanced ordinary differential equations, (1965), Gordon and Breach New York · Zbl 0191.38202
[14] {\scJ. M. Greenberg}, Periodic solutions to a population equation. Preprint. · Zbl 0359.34035
[15] Hale, J.K., Oscillations in nonlinear systems, (1963), McGraw-Hill New York · Zbl 0115.07401
[16] Hale, J.K., Ordinary differential equations, (1969), McGraw-Hill New York · Zbl 0186.40901
[17] Hale, J.K., Theory of functional differential equations, (1977), Springer-Verlag Berlin · Zbl 0425.34048
[18] Hale, J.K., Integral manifolds of perturbed differential systems, Ann. math., 73, 496-531, (1961) · Zbl 0163.32804
[19] Hale, J.K., Critical cases for neutral functional differential equations, J. differential equations, 10, 59-82, (1971) · Zbl 0223.34057
[20] Hale, J.K., Behavior near constant solutions of functional differential equations, J. differential equations, 15, 278-294, (1974) · Zbl 0273.34049
[21] Hartman, P., Ordinary differential equations, (1964), Wiley New York · Zbl 0125.32102
[22] Hausrath, A.R., Stability in the critical case of pure imaginary roots for neutral functional differential equations, J. differential equations, 13, 329-357, (1973) · Zbl 0261.34046
[23] Hopf, E., Abzweigung einer periodischen Lösung von einer stationaren losung eines differential systems, Ber. math. phys., kl. Sachs akad. wiss. Leipzig, 94, 1-22, (1942)
[24] Iooss, G., Existence et stabilité de la solution périodique secondaire intervenant dans LES problèmes d’évolution du type Navier-Stokes, Arch. rational mech. anal., 46, 301-329, (1972) · Zbl 0258.35057
[25] Jones, G.S., The existence of periodic solutions of f′(x) = −αf (x − 1)[1 + f(x)], J. math. anal. appl., 5, 435-450, (1962) · Zbl 0106.29504
[26] Joseph, D.D.; Sattinger, D.H., Bifurcating time periodic solutions and their stability, Arch. rational mech. anal., 45, 79-109, (1972) · Zbl 0239.76057
[27] Jost, R.; Zehneder, E., A generalization of the Hopf bifurcation theorem, Helv. phys. acta, 45, 258-276, (1972)
[28] Judovich, V.I., The onset of auto-oscillations in a fluid, Pmm, 35, 638-655, (1971)
[29] Kakutani, S.; Markus, L., On the nonlinear difference-differential equation y′(t) = [A −by(t − τ)]y(t), Contrib. theory nonlinear oscillations, 4, 1-18, (1958) · Zbl 0082.30301
[30] Kopell, N.; Howard, L.N., Bifurcations under nongeneric conditions, Advances in math., 13, 274-283, (1974) · Zbl 0285.34025
[31] Landau, L.D.; Lifshitz, E.M., Fluid mechanics, (1959), Addison-Wesley Reading, Mass., · Zbl 0146.22405
[32] Lanford, O.E., Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens, (), 159-192
[33] Lefschetz, S., Differential equations: geometric theory, (1963), Interscience New York · Zbl 0107.07101
[34] Lions, J.L.; Magenes, E., ()
[35] Marsden, J.E., The Hopf bifurcation for nonlinear semigroups, Bull. amer. math. soc., 79, 537-541, (1973) · Zbl 0262.76031
[36] Marsden, J.E.; McCracken, M.F., The Hopf bifurcation and its applications, (1976), Springer-Verlag New York · Zbl 0346.58007
[37] {\scM. F. McCracken}, Computation of stability for the Hopf bifurcation theorem, to appear. · Zbl 0475.35073
[38] {\scJ. B. McLaughlin and P. C. Martin}, “The Transition to Turbulence in a Statically Stressed Fluid,” preprint, Dept. of Physics, Harvard University.
[39] Pyartli, A.S., Birth of complex invariant manifolds close to a singular point of a parametrically dependent vector field, Functional anal. appl., 6, 339-340, (1972) · Zbl 0295.34032
[40] Ruelle, D.; Takens, F., On the nature of turbulence, Comm. math. phys., 20, 167-192, (1971) · Zbl 0223.76041
[41] Sacker, R.J., A new approach to the perturbation theory of invariant surfaces, Comm. pure appl. math., 18, 717-732, (1965) · Zbl 0133.35501
[42] Sattinger, D.H., Topics in stability and bifurcation theory, () · Zbl 0466.58016
[43] {\scD. S. Schmidt}, Hopf’s bifurcation theorem and the center theorem of Liapunov, J. Math. Anal. Appl., to appear. · Zbl 0383.34026
[44] Sotomayer, J., Generic one-parameter families of vectors fields, Bull. amer. math. soc., 74, 722-726, (1968) · Zbl 0193.52601
[45] Sternberg, S., Local contraction and a theorem of Poincaré, Amer. J. math., 79, 809-824, (1957) · Zbl 0080.29902
[46] Takens, F., Unfolding of certain singularities of vector fields: generalized Hopf bifurcations, J. differential equations, 14, 476-493, (1973) · Zbl 0273.35009
[47] Volosov, V.M., Averaging in systems of ordinary differential equations, Russian math. surveys, 17, 1-126, (1962) · Zbl 0119.07502
[48] Wright, E.M., A nonlinear difference-differential equation, J. reine angew. math., 194, 66-87, (1955) · Zbl 0064.34203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.