×

zbMATH — the first resource for mathematics

A comparison of various definitions of contractive mappings. (English) Zbl 0365.54023

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. F. Bailey, Some theorems on contractive mappings, J. London Math. Soc. 41 (1966), 101 – 106. · Zbl 0132.18805 · doi:10.1112/jlms/s1-41.1.101 · doi.org
[2] L. P. Belluce and W. A. Kirk, Fixed-point theorems for certain classes of nonexpansive mappings, Proc. Amer. Math. Soc. 20 (1969), 141 – 146. · Zbl 0165.16801
[3] Rosa Maria Tiberio Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. (4) 5 (1972), 103 – 108 (Italian, with English summary). · Zbl 0249.54023
[4] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458 – 464. · Zbl 0175.44903
[5] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727 – 730. · Zbl 0274.54033
[6] S. K. Chatterjea, Fixed point theorems for a sequence of mappings with contractive iterates, Publ. Inst. Math. (Beograd) (N.S.) 14(28) (1972), 15 – 18. · Zbl 0263.54035
[7] Ljubomir B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) 12(26) (1971), 19 – 26. · Zbl 0234.54029
[8] Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267 – 273. · Zbl 0291.54056
[9] Michael Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7 – 10. · Zbl 0096.17101
[10] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74 – 79. · Zbl 0113.16503 · doi:10.1112/jlms/s1-37.1.74 · doi.org
[11] K. Goebel, W. A. Kirk, and Tawfik N. Shimi, A fixed point theorem in uniformly convex spaces, Boll. Un. Mat. Ital. (4) 7 (1973), 67 – 75 (English, with Italian summary). · Zbl 0265.47045
[12] Pramila Srivastava and Vijay Kumar Gupta, A note on common fixed points, Yokohama Math. J. 19 (1971), no. 2, 91 – 95. · Zbl 0228.47042
[13] Vijay Kumar Gupta and Pramila Srivastava, On common fixed points, Rev. Roumaine Math. Pures Appl. 17 (1972), 531 – 538. · Zbl 0239.54031
[14] L. F. Guseman Jr., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 26 (1970), 615 – 618. · Zbl 0203.25202
[15] G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201 – 206. · Zbl 0266.54015 · doi:10.4153/CMB-1973-036-0 · doi.org
[16] Kiyoshi Iséki, On common fixed points of mappings, Bull. Austral. Math. Soc. 10 (1974), 365 – 370. · Zbl 0294.54035 · doi:10.1017/S0004972700041058 · doi.org
[17] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71 – 76. · Zbl 0209.27104
[18] R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405 – 408. · Zbl 0179.28203 · doi:10.2307/2316437 · doi.org
[19] Silvio Massa, Un’osservazione su un teorema di Browder-Roux-Soardi, Boll. Un. Mat. Ital. (4) 7 (1973), 151 – 155 (Italian, with English summary). · Zbl 0265.47037
[20] Nicolae Mureşan, Families of mappings and fixed points, Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 19 (1974), no. 1, 13 – 15 (Romanian, with Russian and English summaries).
[21] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459 – 465. · Zbl 0105.35202
[22] Baidyanath Ray, Some results on fixed points and their continuity, Colloq. Math. 27 (1973), 41 – 48. · Zbl 0263.54036
[23] Barada K. Ray, On non-expansive mappings in a metric space, Nanta Math. 7 (1974), no. 1, 86 – 92. · Zbl 0291.54054
[24] Simeon Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121 – 124. · Zbl 0211.26002 · doi:10.4153/CMB-1971-024-9 · doi.org
[25] Simeon Reich, Kannan’s fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1 – 11. · Zbl 0219.54042
[26] Simeon Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26 – 42 (English, with Italian summary). · Zbl 0249.54026
[27] Simeon Reich, Remarks on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 689 – 697 (English, with Italian summary). · Zbl 0256.47043
[28] Delfina Roux and Paolo Soardi, Alcune generalizzazioni del teorema di Browder-Göhde-Kirk, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 682 – 688 (Italian, with English summary). · Zbl 0261.47036
[29] Ioan A. Rus, On common fixed points, Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 18 (1973), no. 1, 31 – 33 (English, with Romanian and Russian summaries). · Zbl 0266.54016
[30] M. Seelbach, Some common fixed point theorems for compact metric spaces, Notices Amer. Math. Soc. 21 (1974), A-179. Abstract #711-46-23.
[31] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. (2) 5 (1972), 571 – 576. · Zbl 0245.54044 · doi:10.1112/jlms/s2-5.3.571 · doi.org
[32] S. P. Singh, Some results on fixed point theorems, Yokohama Math. J. 17 (1969), 61 – 64. · Zbl 0207.45404
[33] Paolo Soardi, Su un problema di punto unito di S. Reich, Boll. Un. Mat. Ital. (4) 4 (1971), 841 – 845 (Italian, with English summary). · Zbl 0241.47040
[34] Chi Song Wong, Common fixed points of two mappings, Pacific J. Math. 48 (1973), 299 – 312. · Zbl 0269.54028
[35] Chi Lin Yen, Remark on common fixed points, Tamkang J. Math. 3 (1972), 95 – 96. · Zbl 0256.47037
[36] Tudor Zamfirescu, A theorem on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 832 – 834 (1973) (English, with Italian summary). · Zbl 0267.54043
[37] Tudor Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292 – 298. · Zbl 0239.54030 · doi:10.1007/BF01304884 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.