zbMATH — the first resource for mathematics

Hirzebruch’s proportionality theorem in the non-compact case. (English) Zbl 0365.14012

14J25 Special surfaces
14M15 Grassmannians, Schubert varieties, flag manifolds
11F03 Modular and automorphic functions
Full Text: DOI EuDML
[1] Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth Compactification of locally symmetric varieties. Math. Sci. Press (53 Jordan Rd., Brookline, Mass. 02146), 1975 · Zbl 0334.14007
[2] Baily, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Annals of Math.84, 744 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[3] Borel, A.: Introduction to Automorphic Forms. In: Symp. in Pure Math., Vol. IX (AMS, 1966), p. 199 · Zbl 0191.09601
[4] Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Diff. Geometry6 (1972) · Zbl 0249.32018
[5] Bott, R., Chern, S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta math.114, 71 (1965) · Zbl 0148.31906 · doi:10.1007/BF02391818
[6] Cornalba, M., Griffiths, P.: Analytic cycles and vector bundles on non-compact algebraic varieties. Inventiones math.28, 1 (1975) · Zbl 0293.32026 · doi:10.1007/BF01389905
[7] Hirzebruch, F.: Automorphe Formen und der Satz von Riemann-Roch. In: Symposium Internacional de Topologia Algebraica, Unesco, 1958 · Zbl 0129.29801
[8] Iitaka, S.: On logarithmic Kodaira dimension of algebraic varieties. (To appear) · Zbl 0351.14016
[9] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings. Springer Lecture Notes 339 (1973) · Zbl 0271.14017
[10] Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. M. Dekker Inc., 1970 · Zbl 0207.37902
[11] Mumford, D.: Geometric Invariant Theory. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0147.39304
[12] Mumford, D.: Stability of projective varieties. L’Enseignement Mathematique 1977 · Zbl 0497.14004
[13] Mumford, D.: Pathogies III. Amer. J. Math.89 (1967) · Zbl 0146.42403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.