×

zbMATH — the first resource for mathematics

On fundamental groups of complete affinely flat manifolds. (English) Zbl 0364.55001

MSC:
57M05 Fundamental group, presentations, free differential calculus
57N45 Flatness and tameness of topological manifolds
57S20 Noncompact Lie groups of transformations
57S25 Groups acting on specific manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auslander, L, Examples of locally affine spaces, Ann. of math., 64, 255-259, (1956) · Zbl 0072.39703
[2] Auslander, L, On a problem of phillip Hall, Ann. of math., 86, 112-116, (1967) · Zbl 0149.26904
[3] \scL. Auslander, Simply transitive groups of affine motions, Amer. J. Math., to appear. · Zbl 0357.22006
[4] Auslander, L; Johnson, F.E.A, On a conjecture of C. T. C. wall, J. London math. soc., 14, 331-332, (1976) · Zbl 0364.22008
[5] Auslander, L; Markus, L, Flat Lorentz 3-manifolds, Mem. amer. math. soc., 30, (1959) · Zbl 0085.16304
[6] Bieberbach, L; Bieberbach, L, Über die bewegungsgruppen der euklidischen raume, Math. ann., Math. ann., 72, 400-412, (1912), Also · JFM 43.0186.01
[7] Borel, A, Linear algebraic groups, (1969), Benjamin New York · Zbl 0186.33201
[8] Bourbaki, N, Groupes et algèbres de Lie, II, III, () · Zbl 0244.22007
[9] Cheeger, J; Gromoll, D, On the structure of complete manifolds of nonnegative curvature, Ann. of math., 96, 413-443, (1972) · Zbl 0246.53049
[10] Dixmier, J; Lister, W.G, Derivations of nilpotent Lie algebras, (), 155-158 · Zbl 0079.04802
[11] Dyer, J, A nilpotent Lie algebra with nilpotent automorphism group, Bull. amer. math. soc., 76, 52-56, (1970) · Zbl 0198.05402
[12] Furstenberg, H, A Poisson formula for semi-simple Lie groups, Ann. of math., 77, 335-386, (1963) · Zbl 0192.12704
[13] Greenleaf, F.P, Invariant means on topological groups, Van nostrand math. studies, 16, (1969) · Zbl 0174.19001
[14] Helgason, S, Differential geometry and symmetric spaces, (1962), Academic Press New York · Zbl 0122.39901
[15] Humphreys, J.E, Linear algebraic groups, (1975), Springer Pub., New York · Zbl 0507.20017
[16] Jacobson, N, A note on automorphisms and derivations of Lie algebras, (), 281-283 · Zbl 0064.27002
[17] Jacobson, N, Lie algebras, (1962), Interscience New York · JFM 61.1044.02
[18] Johnson, F.E.A, On a conjecture of C. T. C. wall, (1974), mimeographed · Zbl 0278.57006
[19] Kostant, B; Sullivan, D, The Euler characteristic of an affine space form is zero, Bull. amer. math. soc., 81, 937-938, (1975) · Zbl 0313.57009
[20] Milnor, J, Hilbert’s problem 18: on crystalographic groups, fundamental domains, and on sphere packing, (), 491-506
[21] Mostow, G.D, On the fundamental group of homogeneous spaces, Ann. of math., 66, 249-255, (1957) · Zbl 0093.03402
[22] Rickert, N.W, Amenable groups and groups with the fixed point property, Trans. amer. math. soc., 127, 221-232, (1967) · Zbl 0152.40203
[23] Scheuneman, J, Examples of compact locally affine spaces, Bull. amer. math. soc., 77, 589-592, (1971) · Zbl 0223.53048
[24] Scheuneman, J, Affine structures on three-step nilpotent Lie algebras, (), 451-454 · Zbl 0291.22010
[25] Smillie, J, Flat manifolds with non-zero Euler characteristic, (1976), University of Chicago, preprint
[26] Swan, R, Representations of polycyclic groups, (), 573-574 · Zbl 0153.03801
[27] Tits, J, Free subgroups in linear groups, J. algebra, 20, 250-270, (1972) · Zbl 0236.20032
[28] \scA. T. Vasquez, to appear.
[29] Wolf, J, Spaces of constant curvature, (1967), McGraw-Hill New York, Publish or Perish, Boston, Mass. · Zbl 0162.53304
[30] Hirsch, M; Thurston, W, Foliated bundles, invariant measures and flat manifolds, Ann. of math., 101, 369-390, (1975) · Zbl 0321.57015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.