×

zbMATH — the first resource for mathematics

Design and implementation of an efficient priority queue. (English) Zbl 0363.60104

MSC:
60K25 Queueing theory (aspects of probability theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aho, A. V., J. E. Hopcroft andJ. D. Ullman,The design and analysis of computer Algorithms, Addison Wesley, Reading, Mass. (1974). · Zbl 0326.68005
[2] Aho, A. V., J. E. Hopcroft andJ. D. Ullman,On finding lowest common ancestors in tress, Proc. 5-th ACM symp. Theory of Computing (1973), 253–265. · Zbl 0305.68030
[3] Emde Boas, P. Van,An O (n log log n) On-Line Algorithm for the Insert-Extract Min Problem, Rep. TR 74-221 Dept. of Comp. Sci., Cornell Univ., Ithaca 14853, N.Y. Dec. 1974.
[4] Even, S. andO. Kariv,Oral Commun., Berkeley, October 1975.
[5] Fischer, M. J.,Efficiency of equivalence algorithms, in: R. E. Miller andJ. W. Thatcher (eds.),Complexity of Computer Computations, Plenum Press, New York (1972), 158–168.
[6] Hopcroft, J. andJ. D. Ullman,Set-merging Algorithms, SIAM J. Comput. 2 (Dec. 1973), 294–303. · Zbl 0253.68003
[7] Hunt, J. W. andT. G. Szymanski,A fast algorithm for computing longest common subsequences. Manuscript. Dept. Electr. Eng. Princeton Univ. Princeton, N.J. 08540. Oct. 1975. · Zbl 0354.68078
[8] Tarjan, R. E.,Applications of path compression on balanced trees. Manuscript. Stanford Oct. 75. (Submitted toJACM).
[9] Tarjan, R. E.,Efficiency of a good but non linear set union algorithm,J. Assoc. Comput. Mach. 22 (1975), 215–224. · Zbl 0307.68029
[10] Tarjan, R. E.,Edge disjoint spanning trees, dominators and depth first search, Rep. CS-74-455 (Sept. 1974), Stanford.
[11] Wirth, N.,The Programming Language PASCAL (revised report), in K. Jensen and N. WirthPASCAL User Manual and Report, Lecture Notes in Computer Science 18, Springer, Berlin (1974). · Zbl 0261.68040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.