zbMATH — the first resource for mathematics

Über die Selbstadjungiertheit von Schrödinger-Operatoren. (German) Zbl 0363.47015

47B25 Linear symmetric and selfadjoint operators (unbounded)
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI EuDML
[1] Simader, C.G.: Bemerkungen über Schrödinger-Operatoren mit stark singulären Potentialen. Math. Z.138, 53-70 (1974) · Zbl 0317.35028 · doi:10.1007/BF01221884
[2] Agmon, S.: Lectures on elliptic boundary value problems. New York-London: Van Nostrand 1965 · Zbl 0142.37401
[3] Yosida, K.: Functional Analysis. Grundlehren der mathematischen Wissenschaften Bd. 123. Berlin-Heidelberg-New York: Springer 1965
[4] Kalf, H.: Self-Adjointness for Strongly Singular Potentials with a ?|x|2 Fall-Off at Infinity. Math. Z.133, 249-255 (1973) · Zbl 0266.35018 · doi:10.1007/BF01238041
[5] Simon, B.: Essential Self-Adjointness of Schrödinger Operators with Positive Potentials. Math. Ann.201, 211-220 (1973) · Zbl 0234.47027 · doi:10.1007/BF01427943
[6] Kalf, H., Walter, J.: Strongly Singular Potentials and Essential Self-Adjointness of Singular Elliptic Operators inC 0 ? (R n ?\(\cdot\)0}). J. Functional Analysis10, 114-130 (1972) · Zbl 0229.35041 · doi:10.1016/0022-1236(72)90059-6
[7] Sohr, H.: Zur Störungstheorie linearer Operatoren im Hilbertraum. Habilitationsschrift, Universität Tübingen 1975
[8] Kato, T.: Perturbation theory for linear operators. Grundlehren der mathematischen Wissenschaften Bd. 132. Berlin-Heidelberg-New York: Springer 1966
[9] Helms, L.L.: Introduction to Potential Theory. New York-London: Wiley-Interscience 1969 · Zbl 0188.17203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.