×

zbMATH — the first resource for mathematics

Nonlinear stability of parallel flows with subcritical Reynolds numbers. Part 2: Stability of pipe Poiseuille flow to finite axisymmetric disturbances. (English) Zbl 0362.76091

MSC:
76E30 Nonlinear effects in hydrodynamic stability
76E05 Parallel shear flows in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gill, J. Fluid Mech. 21 pp 145– (1965)
[2] Garg, J. Fluid Mech. 54 pp 113– (1972)
[3] Davey, J. Fluid Mech. 45 pp 701– (1971)
[4] Davey, J. Fluid Mech. 36 pp 209– (1969)
[5] Watson, J. Fluid Mech. 14 pp 211– (1962)
[6] Watson, J. Fluid Mech. 9 pp 371– (1960)
[7] DOI: 10.1143/JPSJ.7.489 · doi:10.1143/JPSJ.7.489
[8] Stuart, J. Fluid Mech. 9 pp 353– (1960)
[9] Sexl, Ann. Phys. 83 pp 835– (1927)
[10] Salwen, J. Fluid Mech. 54 pp 93– (1972)
[11] Reynolds, J. Fluid Mech. 27 pp 465– (1967)
[12] Reynolds, Phil. Trans. Roy. Soc. 174 pp 935– (1883)
[13] DOI: 10.1063/1.1692122 · Zbl 0167.25705 · doi:10.1063/1.1692122
[14] Itoh, J. Fluid Mech. 82 pp 455– (1977)
[15] Itoh, Trans. Japan Soc. Aero. Space Sci. 17 pp 175– (1974)
[16] Itoh, Trans. Japan Soc. Aero. Space Sci. 17 pp 160– (1974)
[17] Itoh, Trans. Japan Soc. Aero. Space Sci. 17 pp 65– (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.