×

A mixed finite element method close to the equilibrium model. (English) Zbl 0362.65090


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Fraeijs de Veubeke, B., Hogge, M.: Dual analysis for heat conduction problems by finite elements. Int. J. Numer. Meth. Eng.5, 65–82 (1972) · Zbl 0251.65061
[2] Watwood, V. B. Jr., Hartz, B. J.: An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Int. J. Solids Structures4, 857–873 (1968) · Zbl 0164.26201
[3] Friedrichs, K. O.: Ein Verfahren der Variationsrechnung. Nachr. der Ges. d. Wiss. zu Göttingen, 113–20 (1929) · JFM 55.0294.01
[4] Haslinger, J., Hlaváček, I.: A mixed finite element method close to the equilibrium model, applied to plane elastostatics. Aplikace matematiky21, 28–42 (1976). · Zbl 0355.65087
[5] Pian, T. H. H., Tong, P.: Basis of finite element methods for solid continua. Int. J. Numer. Meth. Eng.1, 3–28 (1969) · Zbl 0252.73052
[6] Raviart, P.-A.: Hybrid finite element methods for solving 2nd order elliptic equations. Conference on Numer. Analysis, Dublin 1974 · Zbl 0339.65061
[7] Nečas, J.: Les methodes directes en théorie des équations elliptiques. Academia, Prague 1967
[8] Strang, G., Fix, G.: An analysis of the finite element method. Prentice-Hall 1973 · Zbl 0356.65096
[9] Zlámal, M.: Curved elements in the finite element method I. SIAM J. Numer. Anal.10, 229–240, (1973) · Zbl 0285.65067
[10] Ciarlet, P. G., Raviart, P. A.: Interpolation theory over curved elements with applications to finite element methods. Computer Meth. in Appl. Mech. and Eng.1, 217–249 (1972) · Zbl 0261.65079
[11] Haslinger, J., Hlaváček, I.: Curved elements in a mixed finite element method. Aplikace matematiky20, 233–252 (1975) · Zbl 0324.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.