×

zbMATH — the first resource for mathematics

Instantons and algebraic geometry. (English) Zbl 0362.14004

MSC:
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14H25 Arithmetic ground fields for curves
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Proc. Nat. Acad. Sci. U.S.74 (1977)
[2] Barth, W.: Math. Ann.226, 125–150 (1977) · Zbl 0417.32013
[3] Grauert, H., Mülich, G.: manuscripta math.16, 75–100 (1975) · Zbl 0318.32027
[4] Jackiw, R., Nohl, C., Rebbi, C.: Phys. Rev. D15, 1642–1646 (1977)
[5] Jackiw, R., Rebbi, C.: Phys. Letters67B, 189–192 (1977)
[6] Maruyama, M.: Nagoya Math. J.58, 25–68 (1975)
[7] Newlander, A., Nirenberg, L.: Ann. Math.65, 391–404 (1957) · Zbl 0079.16102
[8] Penrose, R.: The twistor programme. Rept. Math., Phys., to appear · Zbl 0994.81049
[9] Schwarz, A.S.: Phys. Letters67B, 172–174 (1977)
[10] Serre, J.P.: Ann. Inst. FourierVI, 1–42 (1956)
[11] Ward, R.S.: Phys. Letters61A, 81–82 (1977)
[12] Witten, E.: Some exact multi-instanton solutions of classical Yang-Mills theory (Preprint, 1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.