zbMATH — the first resource for mathematics

Vibrational control theory. (English) Zbl 0358.93014

93C05 Linear systems in control theory
93D99 Stability of control systems
93B05 Controllability
Full Text: DOI
[1] Stoker, J.J., Nonlinear vibrations, (1950), Interscience New York · Zbl 0035.39603
[2] Hale, J.K., Oscillations in nonlinear systems, (1963), McGraw-Hill New York · Zbl 0115.07401
[3] Stephenson, A., A new type of dynamical stability, Mem. proc. manchr. cit. philos. soc., Vol. 52, (1907-1908)
[4] van der pol, Balth, Stabilisierung durch kleine schwingungen, Physica, Vol. 167, (1925)
[5] Bogdiubov, N.N., On some statistical methods in mathematical physics, (1945), Ukr. Acad. Sci. Publishing
[6] Kapitsa, D.L., Dynamic stability of the pendulum with vibrating suspension point, Žurnal eksperimental’ noǐ i teoretičoskoǐ fiziki, Vol. 21, (1951)
[7] Jaeger, J.C., Introduction to applied mathematics, (1951), Oxford University Press Oxford · Zbl 0044.31002
[8] Hemp, G.W.; Sethna, P.R., On dynamical systems with high frequency parametric excitation, Int. J. nonlinear mech., Vol. 3, (1968) · Zbl 0162.12903
[9] Moran, T.J., Transient motions in dynamical systems with high frequency parametric excitation, Int. J. nonlinear mech., Vol. 5, (1970) · Zbl 0233.70016
[10] Valeev, K.G., Dynamic stability of unstable systems, Metianiko tuyordoga tela, (1971), No. 4 · Zbl 0247.34055
[11] Volosov, V.M., Averaging in the systems of ordinary differential equations, Uspehi matamaticaskih nauk, Vol. XVII, No. 6, (1962) · Zbl 0119.07502
[12] Meerkov, S.M., On averaging of the trajectories of the slow dynamic systems, Differential’nie uravnenijo, Vol. IX, No. 9, (1973) · Zbl 0306.34058
[13] Sethna, P.R.; Moran, T.J., Some nonlocal results for weakly nonlinear dynamical systems, Q. appl. math., Vol. 26, (1968) · Zbl 0195.38304
[14] Courant, E.; Livingston, M.S.; Synder, H., Phys. rev., Vol. 88, 1190, (1952)
[15] Livingston, M.S., High-energy accelerators, (1954), Interscience New York
[16] Osovets, S.M., Dynamic stabilization of plasma ring, Žurnal eksperimental’noǐ i teoretičoskoǐ fisiki, Vol. 39, 311, (1960)
[17] Osovets, S.M., Dynamic methods of retention and stabilization of plasma, Uspehí fisičoskih nauk, Vol. 112, No. 4, (1974)
[18] Brown, C.O.; Davis, J.W., Closed-cycle performance of a high-power electric-discharge laser, Appl. phys. lett., Vol. 21, No. 10, 480-481, (1972)
[19] Generalov, I.A.; Zimakov, V.P.; Kosinkin, V.D.; Roizer, Ju.P.; Roitenburg, D.I., A method for substantial increasing of discharge stability in fast flux large volume laser, Pisma v žurnal technicoskoǐ fiziki, Vol. 1, No. 9, (1975)
[20] Aizerman, M.A., Theory of automatic control, (1963), Pergamon Press Oxford · Zbl 0137.28803
[21] Meerkov, S.M., Vibrational control, Automation and remote control, Vol. 34, 201-209, (1973) · Zbl 0259.93042
[22] Kalman, R.E., On the general theory of control systems, Automatic and remote control, Vol. I, (1961), Butterworths London, Proc. First Int. Cong. Int. Federation of Automatic Control
[23] Gabasov, R.; Kirillova, F., Qualitative theory of optimal processes, (1971), Nauka-Publishers, (in Russian). · Zbl 0236.49001
[24] Demidovich, B.P., Lectures on mathematical theory of stability, (1967), Nauka-Publishers, (in Russian). · Zbl 0155.41601
[25] Meerkov, S.M.; Tsitkin, M.Yu., The effectiveness of the method of vibrational control for dynamic systems of order n, Automation and remote control, Vol. 36, 525-529, (1975) · Zbl 0321.93021
[26] Gantriahev, F.R., Theory of matrices, (1966), Nauka-Publishers
[27] Pontriagin, L.S.; Boltiansky, V.G.; Gamkrelidze, R.V.; Mischenko, E.F., Mathematical theory of optimal processes, (1961), Fizmatgiz, (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.