zbMATH — the first resource for mathematics

Singular perturbation potentials. (English) Zbl 0357.47031

47E05 General theory of ordinary differential operators (should also be assigned at least one other classification number in Section 47-XX)
34L99 Ordinary differential operators
35J10 Schrödinger operator, Schrödinger equation
47A40 Scattering theory of linear operators
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
47A55 Perturbation theory of linear operators
Full Text: DOI
[1] Strutt, J.W.; Rayleigh, Baron, The theory of sound, (1937), Macmillan London
[2] Kato, T., Perturbation theory for linear operators, () · Zbl 0836.47009
[3] Rellich, F., Perturbation theory of eigenvalue problems, (1969), Gordon & Breach New York · Zbl 0181.42002
[4] Greenlee, W.M., Singular perturbations of eigenvalues, Arch. rational mech. anal., 34, 143-164, (1969) · Zbl 0184.13702
[5] Simon, B., Coupling constant analyticity for the anharmonic oscillator, Ann. physics, 58, 76-136, (1970)
[6] Klauder, J.R., Field structure through model studies: aspects of nonrenormalizable theories, Acta phys. austriaca suppl., 11, 341-387, (1973)
[7] Klauder, J.R., Soluble models and the meaning of nonrenormalizability, () · Zbl 1165.81345
[8] Reed, M.; Simon, B., Methods of modern mathematical physics, (), Vol. I. · Zbl 0517.47006
[9] Reed, M.; Simon, B., Methods of modern mathematical physics, (), Vol. II · Zbl 0517.47006
[10] Vol. III., to appear.
[11] Ezawa, H.; Klauder, J.R.; Shepp, L.A., Vestigial effects of singular potentials in diffusion theory and quantum mechanics, J. math. phys., 16, 783-799, (1975)
[12] Simon, B., Quadratic forms and Klauder’s phenomenon: A remark on very singular perturbations, J. functional analysis, 14, 295-298, (1973) · Zbl 0268.47021
[13] DeFacio, B.; Hammer, C.L., Remarks on the klauder phenomenon, J. math. phys., 15, 1071-1077, (1974)
[14] Detwiler, L.; Klauder, J.R., Supersingular quantum perturbations, Phys. rev. D, 11, 1436-1441, (1975)
[15] Kato, T.; Kato, T.; Kato, T., On the convergence of the perturbation method, II., Progr. theoret. phys., Progr. theoret. phys., Progr. theoret. phys., 5, 207-212, (1950)
[16] Kato, T., On the upper and lower bounds of eigenvalues, J. physical. soc. jap., 4, 334-339, (1949)
[17] \scE. Harrell, Generalizations of Temple’s inequality, unpublished. · Zbl 0345.47007
[18] Yosida, K., ()
[19] Sagan, H., Boundary and eigenvalue problems in mathematical physics, (1961), Wiley New York · Zbl 0106.37303
[20] Temple, G., The theory of Rayleigh’s principle as applied to continuous systems, (), 276-293 · JFM 54.0852.01
[21] Bazley, N.W.; Fox, D., A procedure for estimating eigenvalues, J. math. phys., 3, 469-471, (1962) · Zbl 0108.11304
[22] Löwdin, P-O., Studies in perturbation theory. XI. lower bounds to energy eigenvalues, ground state, and excited states, J. chem. phys., 43, S175-S185, (1965)
[23] \scW. Thirring, “Vorlesungen über mathematische Physik,“ Institut für theoretische Physik der Universität Wien, Vienna; Vol. 7, “Quantenmechanik.”
[24] Hsieh, P-F.; Sibuya, Y., On the asymptotic integration of second order linear differential equations with polynomial coefficients, J. math. anal. appl., 16, 84-103, (1966) · Zbl 0161.05803
[25] ()
[26] Simon, B.; Hoegh-Krohn, R., Hypercontractive semigroups and two-dimensional self-coupled Bose fields, J. functional analysis, 9, 121-180, (1972) · Zbl 0241.47029
[27] Greenlee, W.M., Singular perturbation theory for semibounded operators, Bull. amer. math. soc., 82, 341-343, (1976) · Zbl 0353.47006
[28] \scW. M. Greenlee, Singular perturbation of simple eigenvalues, in “Proceedings of the Regional Conference on Singular Perturbations”; Rocky Mt. J. Math., to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.