×

zbMATH — the first resource for mathematics

Optimal control analysis in the chemotherapy of IgG multiple myeloma. (English) Zbl 0354.92041

MSC:
92D25 Population dynamics (general)
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexanian, R. 1972. ”Multiple Myeloma and Related Disorders.” InHematology, Principles and Practice, Mengel, C. E., E. Frei III, and R. Nachman, eds. Chicago: Year Book Medical Publishers.
[2] Aroesty, J., T. Lincoln, N. Shapiro and G. Boccia. 1973. ”Tumor Growth and Chemotherapy: Mathematical Methods, Computer Simulations, and Experimental Foundations.”Math Biosci.,17, 243–300. · Zbl 0257.92002
[3] Bahrami, K. and M. Kim. 1975. ”Optimal Control of Multiplicative Control Systems Arising from Cancer Therapy.”IEEE Trans. Auto. Cont. AC-20, 537–542. · Zbl 0308.92016
[4] Becker, F. F. (ed.) 1975.Cancer, a comprehensive treatise; Vol 1,Etiology: Chemical and Physical Carcinogenesis; Vol 2,Etiology: Viral Carcinogenesis; Vol 3,Biology of Tumors: Cellular Biology and Growth; Vol 4,Biology of Tumors: Surfaces Immunology and Comparative Pathology. New York: Plenum Press.
[5] Berenbaum, M. C. 1969. ”Dose-response Curves for Agents that Impair Cell Reproductive Integrity.”Br. J. Cancer,23, 434–445.
[6] Busch, H. and M. Lane. 1967.Chemotherapy. Chicago: Year Book Medical Publishers.
[7] Engle, R. L. (Jr.) and L. A. Wallis. 1969.Immunoglobulinopathies. Springfield: C. C. Thomas.
[8] Hahn, G. M. 1966. ”State Vector Description of the Proliferation of Mammalian Cells in Tissue Culture, I. Exponential Growth.”Biophys J.,6, 275–290.
[9] – 1970. ”A Formalism Describing the Kinetics of Some Mammalian Cell Populations.”Math. Biosci.,6, 295–304.
[10] Himmelstein, K. J. and K. B. Bischoff. 1973a. ”Mathematical Representations of Cancer Chemotherapy Effects.”J. Pharmacokinet. Biopharm.,1, 51–68.
[11] – 1973b. ”Models of ARA-C Chemotherapy of L1210 Leukemia in Mice.”J. Pharmacokin. Biopharm.,1, 69–81.
[12] Jusko, W. J. 1971. ”Pharmacodynamics of Chemotherapeutic Effects: Dose-time-response Relationships for Phase-nonspecific Agents.”J. Pharm. Sci. 60, 892–895.
[13] – 1973. ”A Pharmacodynamic Model for Cell-Cycle-Specific Chemotherapeutic Agents.”J. Pharmacokin. Biopharm.,1, 175–199.
[14] Leitmann, G. 1966.An Introduction to Optimal Control. New York: McGraw-Hill. · Zbl 0196.46302
[15] Petrovskii, A. M., V. V. Suchkov and I. K. Shkhvatsabaya. 1973. ”Cure Management of Disease as a Problem in Modern Control Theory.”Avtomatika I Telemekhanika,34, 99–105. (English translation)Automation and Remote Control,34, 767–771.
[16] – 1974. ”Systems Analysis of Some Medicobiological Problems Connected with Treatment Control.”Automika I Telemekhanika,35, 54–62. (English Translation–Automation and Remote Control,35, 219–225).
[17] Pratt, W. B. 1973.Fundamentals of Chemotherapy. Oxford: Oxford University Press.
[18] Simpson-Herren, L. and H. H. Lloyd. 1970. ”Kinetic Parameter and Growth Curves for Experimental Tumor Systems.”Cancer Chemother. Rep.,54, 143–174.
[19] Skipper, H. E. 1969. ”Improvement of the Model Systems.”Cancer Res.,29, 2329–2333.
[20] Skipper, H. E. 1974. Personal Communication.
[21] Snapper, I. and A. Kahn. 1971.Myelomatosis, Fundamentals and Clinical Features. Baltimore: University Park Press.
[22] Sullivan, P. W. and S. E. Salmon. 1972. ”Kinetics of Tumor Growth and Regression in IgG Multiple Myeloma.”J. Clin. Invest.,51, 1697–1708.
[23] Swan, G. W. 1975. ”Some strategies for Harvesting a Single Species.”Bull. Math. Biol.,37, 659–673. · Zbl 0323.92014
[24] Waldenström, J. 1970.Diagnosis and Treatment of Multiple Myeloma. New York: Grune and Stratton.
[25] Zakharova, L. M., A. M. Petrovskii and V. I. Shtabtsov. 1973. ”Matrix Model for Selection of Pharmacological Treatment.”Automatika I Telemekhanika,34, 58–61. (English translation–Automation and Remote Control,34, 1763–1764.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.