×

zbMATH — the first resource for mathematics

A dual algorithm for the solution of nonlinear variational problems via finite element approximation. (English) Zbl 0352.65034

MSC:
65K05 Numerical mathematical programming methods
49K35 Optimality conditions for minimax problems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35A15 Variational methods applied to PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Rockafellar, R.T., Convex analysis, (1970), Princeton · Zbl 0229.90020
[2] Luenberger, D.G., Introduction to linear and nonlinear programming, (1973), Addison-Wesley Mass · Zbl 0241.90052
[3] Geoffrion, D., Duality in nonlinear programming. A simplified applications-oriented development, SIAM rev., 13, 1-37, (1971) · Zbl 0232.90049
[4] Glowinski, R.; Marrocco, A., Sur l’approximation, par éléments finis d’ordre 1, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non-linéaires, C.R. hebd. Séanc. acad. sci., Paris, 278, 1649-1652, (1974), Sér. A · Zbl 0287.65055
[5] Hestenes, M., Multiplier and gradient methods, Jota, 4, 5, 303-320, (1969) · Zbl 0174.20705
[6] Powell, M.J.D., A method for nonlinear optimization in minimization problems, () · Zbl 0194.47701
[7] Arrow, K.J.; Hurwicz, L.; Uzawa, U., Studies in non-linear programming, (1968), Standford University Press
[8] R. Glowinski and A. Marrocco, Rapport No 74023. Laboratoire d’Analyse Numérique, L.A. 189, Université de Paris VI. Paris France (to appear in R.A.I.R.O.).
[9] Rockafellar, R.T., The multiplier method of hestenes and powell applied to convex programming, Jota, 12, 6, 555-562, (1973) · Zbl 0254.90045
[10] D. P. Bertsekas, On the method of multipliers for convex programming. I.E.E.E. Trans. AC-20, 385-388. · Zbl 0301.49023
[11] B. V. Kort and D. Bertsekas, Combined primal-dual and penalty methods for convex programming, SIAM J. (To appear). · Zbl 0332.90035
[12] M. Fortin, Minimization of some non-differentiable functionals by the Augmented Lagrangian method of Hestenes and Powell. To appear.
[13] Moreau, J.J., Proximité et dualité dans un espace hilbertien, Bull. soc. math. fr., 93, 273-299, (1965) · Zbl 0136.12101
[14] Luenberger, D.G., Control problems with kinks, I.E.E.E. trans., 15, 570-575, (1970)
[15] Cea, J.; Glowinski, R.; Nedelec, J.C., Minimisation de fonctionnelles non différentiables. conférence on numerical analysis, dundee, (), 19-38
[16] Bertsekas, D.P., Non-differentiable optimization via approximation, Math. prog. study, 3, (1976), North Holland, To appear
[17] Lions, J.L., Quelques méthodes de résolution des problèmes non-linéaires, (1969), Dunod Paris · Zbl 0189.40603
[18] R. Glowinski, J. L. Lions and R. Tremolieres, Analyse numérique des inéquations variationnelles, Dunod, Paris. To appear. · Zbl 0358.65091
[19] Zienkiewicz, The finite element method in engineering science, (1970), McGraw-Hill
[20] Ekeland, I.; Temam, R., Analyse convexe et problèmes variationnels, (1971), Dunod Paris
[21] Céa, J.; Glowinski, R., Sur des méthodes d’optimisation par relaxation, R.a.i.r.o., R3, 5-32, (1973) · Zbl 0279.90033
[22] Ciarlet, P.G.; Raviart, P.A., The combined effect of curved boundaries and numerical integration in isoparametric finite element method, (), 409-474
[23] Nédelec, J.C., Approximation par éléments finis des équations de Riccati, Journées eléments finis, (1974), Université de Rennes
[24] Mosolov, P.P.; Miasnikov, V.P., Variational methods in the theory of the fluidity of a visco-plastic medium, Pmm, 29, 468-492, (1965)
[25] Duvaut, G.; Lions, J.L., LES inéquations en Mécanique et en physique, (1972), Dunod Paris · Zbl 0298.73001
[26] Mercier, B., Approximation par éléments finis et résolution par un algorithme de pénalisation-dualité d’un problème d’élasto-plasticité, C.R. hebd. Séanc. acad. sci., Paris, 280, 287-290, (1975), Sér. A · Zbl 0302.73044
[27] Mercier, B., A finite element aptroximation of elasto-plastic problem, (), 23-31
[28] Glowinski, R.; Marrocco, A., On the solution of a class of non-linear Dirichlet problems by a penalty-duality method and finite element of order one, Proceedings 6th congress IFIP-TC7 (optimization), (1975), Springer Verlag · Zbl 0311.49019
[29] Lemaréchal, C., An extension of davidon methods to nondifferentiable functions, Math. prog. study, 3, (1976), North Holland, To appear
[30] C. Lemaréchal, Thèse d’Etat, Paris (To appear).
[31] Bristeau, M.O., Thèse de 3ème cycle, (1975), Paris
[32] Vanende-Morreeuw, A., Thèse de 3ème cycle, (1972), Paris
[33] C. Jouron, Resolution numérique du problème des surfaces minima. Archs Ration. Mech. Analysis (To appear).
[34] Rockafellar, R.T., A dual approach to solving nonlinear programming problems by unconstrained optimization, Math. prog., 5, 354-373, (1973) · Zbl 0279.90035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.