×

zbMATH — the first resource for mathematics

Relative pseudo-complements, join-extensions, and meet-retractions. (English) Zbl 0351.06010

MSC:
06E05 Structure theory of Boolean algebras
03G05 Logical aspects of Boolean algebras
06C15 Complemented lattices, orthocomplemented lattices and posets
06B23 Complete lattices, completions
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Balbes, R., Dwinger, Ph.: Distributive lattices. Columbia: University of Missouri Press 1974 · Zbl 0321.06012
[2] Balbes, R., Horn, A.: Stone lattices. Duke math. J.38, 537-545 (1970) · Zbl 0207.02802 · doi:10.1215/S0012-7094-70-03768-3
[3] Banaschewski, B.: Hüllensysteme und Erweiterungen von Quasi-Ordnungen. Z. math. Logik Grundl. Math.2, 117-130 (1956) · Zbl 0073.26904 · doi:10.1002/malq.19560020803
[4] Birkhoff, G.: Lattice theory, 3rd ed. Providence: American Mathematical Society 1967 · Zbl 0153.02501
[5] Blyth, T.S., Janowitz, M.F.: Residuation theory. Oxford-New York: Pergamon Press 1972 · Zbl 0301.06001
[6] Bruns, G.: Darstellungen und Erweiterungen geordneter Mengen. J. reine angew. Math.209, 167-200 (1962) · Zbl 0148.01202 · doi:10.1515/crll.1962.209.167
[7] Büchi, J.R.: Representation of complete lattices by sets. Portugaliae Math.11, 151-167 (1952)
[8] Frink, O.: Pseudo-complements in semi-lattices. Duke math. J.29, 504-514 (1962) · Zbl 0114.01602 · doi:10.1215/S0012-7094-62-02951-4
[9] Glivenko, M.V.: Sur quelques points de la logique de M. Brouwer. Bulletin Acad. Bruxelles15, 183-188 (1929) · JFM 55.0030.05
[10] Grätzer, G.: Lattice theory. First concepts and distributive lattices. San Francisco: W.H. Freeman 1971 · Zbl 0232.06001
[11] Huntington, E.V.: Sets of independent postulates for the algebra of logic. Trans. Amer. math. Soc.5, 288-309 (1904) · JFM 35.0087.02 · doi:10.1090/S0002-9947-1904-1500675-4
[12] Katri?ák, T.: Pseudo-komplementäre Halbverbände. Mat. ?asopis, Slovensk. Akad. Vied.18, 121-143 (1968) · Zbl 0164.00701
[13] Katri?ák, T., Mitschke, A.: Stonesche Verbände der Ordnungn und Postalgebren. Math. Ann.199, 13-30 (1972) · Zbl 0253.06009 · doi:10.1007/BF01419572
[14] Mandelker, M.: Relative annihilators in lattices. Duke math. J.37, 377-386 (1970) · Zbl 0206.29701 · doi:10.1215/S0012-7094-70-03748-8
[15] McKinsey, J.C.C., Tarski, A.: On closed elements in closure algebras. Ann of Math. II. Ser.47, 122-162 (1946) · Zbl 0060.06207 · doi:10.2307/1969038
[16] Pesotan, H.: Dense extensions of a partially ordered set. J. reine angew. Math.267, 163-182 (1974) · Zbl 0289.06003 · doi:10.1515/crll.1974.266.163
[17] Rasiowa, H.: Algebraic treatment of the functional calculi of Heyting and Lewis. Fundamenta Math.38, 99-126 (1951) · Zbl 0044.24902
[18] Rasiowa, H., Sikorski, R.: The mathematics of metamathematics. Warsaw: Polska Akademia Nauk 1963 · Zbl 0122.24311
[19] Schmidt, E.T.: Über die Kongruenzverbände der Verbände. Publ. math., Debrecen9, 243-256 (1962) · Zbl 0178.33902
[20] Schmidt, E.T.: Zur Charakterisierung der Kongruenzverbände der Verbände. Mat. ?asopis, Slovensk. Akad. Vied18, 3-20 (1968) · Zbl 0155.35102
[21] Schmidt, J.: Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge. Arch. der Math.7, 242-249 (1956) · Zbl 0073.03801 · doi:10.1007/BF01900297
[22] Schmidt, J.: Universal and internal properties of some extensions of partially ordered sets. J. reine angew. Math.235, 28-42 (1972) · Zbl 0237.06001 · doi:10.1515/crll.1972.253.28
[23] Schmidt, J.: Universal and internal properties of some completions ofk-join-semilattices andk-join-distributive partially ordered sets. J. reine angew. Math.255, 8-22 (1972) · Zbl 0263.06004 · doi:10.1515/crll.1972.255.8
[24] Schmidt, J.: Each join-completion of a partially ordered set is the solution of a universal problem. J. Austral. math. Soc.17, 406-413 (1974) · Zbl 0304.06003 · doi:10.1017/S1446788700018048
[25] Schmidt, J.: Quasi-decompositions, exact sequences, and triple sums of semigroups. I. General theory. II. Applications. In: Proc. Coll. Universal Algebra (Szeged 1975). Amsterdam-Oxford-New York: North Holland Publishing Company 1977, 365-397 and 399-428
[26] Sikorski, R.: Boolean algebras. Berlin-Göttingen-Heidelberg: Springer 1960 · Zbl 0087.02503
[27] Smith, D.: Meet-irreducible elements in implicative lattices. Proc. Amer. math. Soc.34, 57-62 (1972) · Zbl 0259.06008 · doi:10.1090/S0002-9939-1972-0291035-3
[28] Stone, M.H.: The theory of representations for Boolean algebras. Trans. Amer. math. Soc.40, 37-111 (1936) · Zbl 0014.34002
[29] Varlet, J.C.: A generalization of the notion of pseudo-complementedness. Bull. Soc. roy. Sci. Liège36, 149-158 (1968) · Zbl 0162.03501
[30] Varlet, J.C.: Fermetures multiplicatives. Bull. Soc. roy. Sci. Liège38, 101-115 (1969) · Zbl 0177.03203
[31] Varlet, J.C.: Relative annihilators in semilattices. Bull. Austral. math. Soc.9, 159-185 (1973) · Zbl 0258.06009 · doi:10.1017/S0004972700043094
[32] Venkatanarasimhan, P.V.: Pseudo-complements in posets. Proc. Amer. math. Soc.28, 9-17 (1971) · Zbl 0218.06002 · doi:10.1090/S0002-9939-1971-0272687-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.