×

zbMATH — the first resource for mathematics

Essential self-adjointness of Schrödinger-type operators. (English) Zbl 0346.35040

MSC:
35J10 Schrödinger operator, Schrödinger equation
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ikebe, T; Kato, T, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. rational mech. anal., 9, 77-99, (1962) · Zbl 0103.31801
[2] Hellwig, B, A criterion for self-adjointness of singular elliptic differential operators, J. math. anal. appl., 26, 279-291, (1969) · Zbl 0175.40003
[3] Kato, T, Schrödinger operators with singular potentials, Israel J. math., 13, 135-148, (1972)
[4] Kurss, H, Symmetry of ▽ · P▽ + q at r = ∞ when q is bounded below, SIAM rev., 13, 151, (1971)
[5] Laptev, S.A, Closure in the metric of a generalized Dirichlet integral, J. differential equations, 7, 727-736, (1971) · Zbl 0216.41004
[6] Littman, W, Generalized subharmonic functions: monotonic approximations and an improved maximum principle, Ann. scuola norm. sup. Pisa, 17, 207-222, (1963) · Zbl 0123.29104
[7] Stetkaer-Hansen, H, A generalization of a theorem of wienholtz concerning essential selfadjointness of singular elliptic operators, Math. scand., 19, 108-112, (1966) · Zbl 0149.07502
[8] Ural’ceva, N.N, The nonselfadjointness in L2(rn) of an elliptic operator with rapidly increasing coefficients (Russian), (), 288-294
[9] Walter, J, Symmetrie elliptischer differentialoperatores, Math. Z., 98, 401-406, (1967) · Zbl 0146.34302
[10] Weyl, H, Über gewöhnliche differentialgleichungen mit singularitäten und de zugehörigen entwickungen willkürlicher funktionen, Math. ann., 68, 220-269, (1910) · JFM 41.0343.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.