Dual variational principles for an elliptic partial differential equation. (English) Zbl 0345.35035


35J20 Variational methods for second-order elliptic equations
35B45 A priori estimates in context of PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
Full Text: EuDML


[1] Aubin J. P., Burchard H. G.: Some aspects of the method of the hypercircle applied to elliptic variational problems. 1 - 68, Numerical solution of partial differential equations - II, SYNSPADE 1970 B. Hubbard, Academic Press, New York 1971. · Zbl 0264.65069
[2] Babuška I., Kellog R. D.: Numerical solution of the neutron diffusion equation in the presence of corners and interfaces. Numerical reactor calculations, Panel IAEA-SM-154/59, Vienna 1973.
[3] Bramble J. H., Zlámal M.: Triangular elements in the finite element method. Math, of Comp., 24, (1970), 809-821. · Zbl 0226.65073
[4] Grenacher F.: A posteriori error estimates for elliptic partial differential equations. Technical Note BN-743, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1972.
[5] Kang C. M., Hansen K. F.: Finite element method for the neutron diffusion equation. Trans. Am. Nucl. Soc. 14 (1971), 199.
[6] Kaper H. G., Leaf G. K., Lindeman A. J.: Applications of finite element method in reactor mathematics. ANL-7925, Argonne National Laboratory, Argonne, Illinois, 1972.
[7] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967. · Zbl 1225.35003
[8] Semenza L. A., Lewis E. E., Rossow E. C.: A finite element treatment of neutron diffusion. Trans. Am. Nucl. Soc. 14, (1971), 200.
[9] Semenza L. A., Lewis E. E., Rossow E. C.: Dual finite element methods for neutron diffusion. Trans. Am. Nucl. Soc., 14 (1971), 662.
[10] Strang G., Fix G. J.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973. · Zbl 0356.65096
[11] Taylor A. E.: Introduction to functional analysis. John Willey & Sons, New York, 1967.
[12] Vacek J.: Dual variational principles for neutron diffusion equation. thesis, MFF UK, Praha, 1974
[13] Yasinsky J. B., Kaplan S.: On the use of dual variational principles for the estimation of error in approximate solutions of diffusion problems. Nucl. Sci. Eng., 31 (1968), 80.
[14] Zlámal M., Ženíšek A.: Mathematical aspects of the finite element method. Trans. of ČSAV, 81 (1971), Praha.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.