×

zbMATH — the first resource for mathematics

Limit-n criteria of integral type. (English) Zbl 0344.34014

MSC:
34B20 Weyl theory and its generalizations for ordinary differential equations
34A30 Linear ordinary differential equations and systems, general
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01428264 · Zbl 0235.34045 · doi:10.1007/BF01428264
[2] DOI: 10.1112/plms/s3-29.2.351 · Zbl 0305.34040 · doi:10.1112/plms/s3-29.2.351
[3] DOI: 10.1007/BF01110336 · Zbl 0238.47029 · doi:10.1007/BF01110336
[4] DOI: 10.1112/plms/s3-23.2.301 · Zbl 0224.34018 · doi:10.1112/plms/s3-23.2.301
[5] DOI: 10.1112/jlms/s1-44.1.273 · Zbl 0162.39201 · doi:10.1112/jlms/s1-44.1.273
[6] DOI: 10.1112/jlms/s1-43.1.465 · Zbl 0162.39202 · doi:10.1112/jlms/s1-43.1.465
[7] DOI: 10.1112/jlms/s1-41.1.531 · Zbl 0145.10604 · doi:10.1112/jlms/s1-41.1.531
[8] DOI: 10.1112/jlms/s2-7.2.343 · Zbl 0269.34014 · doi:10.1112/jlms/s2-7.2.343
[9] DOI: 10.1112/jlms/s2-4.2.245 · Zbl 0229.34023 · doi:10.1112/jlms/s2-4.2.245
[10] DOI: 10.1093/qmath/24.1.531 · Zbl 0273.34009 · doi:10.1093/qmath/24.1.531
[11] DOI: 10.1093/qmath/24.1.257 · Zbl 0261.34021 · doi:10.1093/qmath/24.1.257
[12] Eastham, The spectral theory of periodic differential equations (1973)
[13] DOI: 10.1112/blms/4.3.340 · Zbl 0263.34019 · doi:10.1112/blms/4.3.340
[14] DOI: 10.1016/0022-0396(70)90158-0 · Zbl 0211.11203 · doi:10.1016/0022-0396(70)90158-0
[15] DOI: 10.2307/2036444 · Zbl 0179.40505 · doi:10.2307/2036444
[16] DOI: 10.1112/jlms/s2-3.2.297 · Zbl 0211.11201 · doi:10.1112/jlms/s2-3.2.297
[17] DOI: 10.1007/BF01179735 · Zbl 0257.34030 · doi:10.1007/BF01179735
[18] DOI: 10.1093/qmath/22.1.131 · Zbl 0208.16801 · doi:10.1093/qmath/22.1.131
[19] DOI: 10.1016/0022-0396(72)90048-4 · Zbl 0278.34049 · doi:10.1016/0022-0396(72)90048-4
[20] Dunford, Linear operators, II: Spectral theory (1963) · Zbl 0131.12701
[21] DOI: 10.1112/jlms/s2-6.3.412 · Zbl 0267.34016 · doi:10.1112/jlms/s2-6.3.412
[22] DOI: 10.1007/BF01427949 · Zbl 0223.34054 · doi:10.1007/BF01427949
[23] DOI: 10.1112/jlms/s2-8.2.209 · Zbl 0309.34016 · doi:10.1112/jlms/s2-8.2.209
[24] DOI: 10.1112/jlms/s2-7.1.135 · Zbl 0267.34017 · doi:10.1112/jlms/s2-7.1.135
[25] DOI: 10.1093/qmath/23.3.267 · Zbl 0263.34022 · doi:10.1093/qmath/23.3.267
[26] DOI: 10.1112/jlms/s2-8.2.217 · Zbl 0309.34017 · doi:10.1112/jlms/s2-8.2.217
[27] DOI: 10.1090/S0002-9904-1973-13348-8 · Zbl 0279.34015 · doi:10.1090/S0002-9904-1973-13348-8
[28] Naimark, Linear differential operators (1968)
[29] Coddington, Theory of ordinary differential equations. (1955) · Zbl 0064.33002
[30] DOI: 10.1007/BF01214698 · Zbl 0259.34035 · doi:10.1007/BF01214698
[31] DOI: 10.1093/qmath/13.1.129 · Zbl 0133.34104 · doi:10.1093/qmath/13.1.129
[32] Brinck, Math. Scand. 7 pp 219– (1959) · Zbl 0102.30102 · doi:10.7146/math.scand.a-10575
[33] DOI: 10.1090/S0002-9939-1967-0213640-0 · doi:10.1090/S0002-9939-1967-0213640-0
[34] DOI: 10.1007/BF01111391 · Zbl 0226.34026 · doi:10.1007/BF01111391
[35] Atkinson, Discrete and continuous boundary problems. (1964) · Zbl 0117.05806
[36] Ahiezer, Theory of linear operators in Hilbert space (1966)
[37] Hinton, Proc. Amer. Math. Soc 32 pp 134– (1972)
[38] DOI: 10.4153/CJM-1972-024-2 · Zbl 0229.34024 · doi:10.4153/CJM-1972-024-2
[39] DOI: 10.2307/2372105 · Zbl 0035.18202 · doi:10.2307/2372105
[40] DOI: 10.2307/2372315 · Zbl 0044.31202 · doi:10.2307/2372315
[41] DOI: 10.1017/S0017089500000203 · Zbl 0163.10602 · doi:10.1017/S0017089500000203
[42] DOI: 10.1007/BF01565401 · Zbl 0013.11902 · doi:10.1007/BF01565401
[43] DOI: 10.1007/BF01431440 · Zbl 0241.34066 · doi:10.1007/BF01431440
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.