×

zbMATH — the first resource for mathematics

Dirichlet forms and diffusion processes on rigged Hilbert spaces. (English) Zbl 0342.60057

MSC:
60J65 Brownian motion
60J60 Diffusion processes
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albeverio, S., HØegh-Krohn, R.: Quasi invariant measures, symmetric diffusion processes and quantum fields. In: Les méthodes mathématiques de la théorie quantique des champs, Colloques Internat. du Centre Nat. Rech. Sci. Marseille 23-27 Juin 1975, Editions du Centre Nat. Rech. Sci., No 248, 11-59. Paris 1976
[2] Cabana, E.M.: On stochastic differentials in Hilbert spaces. Proc. Amer. Math. Soc. 20, 259-265 (1969) · Zbl 0167.16903 · doi:10.2307/2036005
[3] Daletskii, Yu.L.: Infinite dimensional elliptic operators and parabolic equations connected with them. Russian Math. Surveys 22, 1-53 (1967) (translated from the Russian) · Zbl 0164.41304 · doi:10.1070/RM1967v022n04ABEH003769
[4] Daletskii, Yu.L., Shnaiderman, Ya.I.: Diffusion and quasi invariant measures on infinitedimensional Lie groups. Functional Analysis Appl. 3, No 2, 88-90 (1969) (translated from the Russian)
[5] Vishik, M. I.: Les opérateurs différentiels et pseudodifférentiels a une infinité de variables des problèmes elliptiques et paraboliques, et les équations aux dérivées partielles. Colloques internat. Centre Nat. Rech. Sci. Astérisque 2-3, 342-362 (1973) · Zbl 0285.35061
[6] Gross, L.: Potential theory on Hilbert space. J. Functional Anal. 1, 123-181 (1967) · Zbl 0165.16403 · doi:10.1016/0022-1236(67)90030-4
[7] Gross, L.: Abstract Wiener measure and infinite dimensional potential theory. In lectures in Modern Analysis and Applications II, Lecture Notes in Mathematics 140, 84-116. Berlin-Heidelberg-New York: Springer 1970
[8] Piech, A.: Some regularity properties of diffusion processes on abstract Wiener space. J. Functional Analysis 8, 153-172 (1971) · Zbl 0215.49102 · doi:10.1016/0022-1236(71)90024-3
[9] Goodman, V.: Harmonic functions on Hilbert space. J. Functional Analysis 10, 451-470 (1972) · Zbl 0235.31011 · doi:10.1016/0022-1236(72)90041-9
[10] Elworthy, K.D.: Gaussian measures on Banach spaces and manifolds, in ?Global analysis and its applications?, Vol. II, International Atomic Energy Agency, Vienna (1974) · Zbl 0319.58007
[11] Hui-Hsiung, Kuo: Stochastic integrals in abstract Wiener space I. Pacific J. Math. 41, 469-483 (1972); II, Nagoya Math. J. 50, 89-116 (1973) · Zbl 0226.60076
[12] Lin, T.F.: On infinite dimensional Ito’s formula. Proc. Amer. Math. Soc. 49, 219-226 (1975) · Zbl 0336.60057
[13] Krée, P.: Equations aux dérivées partielles en dimension infinie. Séminaire Paul Krée, 1ere année: 1974/75, Université Pierre et Marie Curie, Institut Henri Poincaré
[14] Kölzow, D.: A survey of abstract Wiener spaces. In Stochastic Processes and related Topics. 293-315. Ed. M.L. Puri. New York: Academic Press 1975 · Zbl 0404.60004
[15] Gelfand, I.M., Vilenkin, N.Ya.: Generalized functions. Vol.4 (translated from the Russian). New York: Academic Press 1964
[16] Segal, I.: Mathematical problems of relativistic physics. Amer. Math. Soc., Providence (1963) · Zbl 0112.45307
[17] Araki, H.: Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys. 1, 492-504 (1960) · Zbl 0099.22906 · doi:10.1063/1.1703685
[18] Umemura, Y.: Measures on infinite dimensional vector spaces. Publ. Res. Inst. Kyoto Univ. A 1, 1-54 (1965) · Zbl 0181.41502 · doi:10.2977/prims/1195196433
[19] Xia, Dao-Xing: Measure and integration theory on infinite dimensional spaces. New York: Academic Press 1972 · Zbl 0275.28001
[20] Hegerfeldt, G.C.: On canonical commutation relations and infinite-dimensional measures. J. Math. Phys. 13, 45-50 (1972) · Zbl 0232.46040 · doi:10.1063/1.1665849
[21] Jost, R.: Die Heisenberg-Weyl’schen Vertauschungsrelationen: Zum Beweis des von Neumannschen Satzes. In Physical Reality and Mathematical Description. 234-238. Ed. C.P. Enz, J. Mehra, Dordrecht, D. Reidel, 1974 · Zbl 0324.46073
[22] Courrège, P., Renouard, P.: Oscillateur anharmonique, mesures quasi-invariantes sur C(R,R) et théorie quantique des champs en dimension d=1. Astérisque 22-23, 3-245 (1975) · Zbl 0316.60009
[23] Priouret, P., Yor, M.: Processus de diffusion à valeurs dans R et mesures quasi-invariantes sur C(R,R). Astérisque 22-23, 247-290 (1975) · Zbl 0316.60051
[24] Albeverio, S., HØoegh-Krohn, H.: A remark on the connection between stochastic mechanics and the heat equation. J. Math. Phys. 15, 1745-1747 (1974) · Zbl 0291.60028 · doi:10.1063/1.1666536
[25] Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083 (1976) · Zbl 0318.46049 · doi:10.2307/2373688
[26] Eckmann, J.P.: Hypercontractivity for anharmonic oscillators. J. Functional Analysis 16, 388-404 (1974) · Zbl 0285.47032 · doi:10.1016/0022-1236(74)90057-3
[27] Beurling, A., Deny, J.: Dirichlet spaces. Proc. Nat. Acad. Sci. USA 45, 208-215 (1959) · Zbl 0089.08201 · doi:10.1073/pnas.45.2.208
[28] Fukushima, M.: Regular representations of Dirichlet spaces. Trans. Amer. Math. Soc. 155, 455-473 (1971) · Zbl 0248.31007 · doi:10.1090/S0002-9947-1971-0281256-1
[29] Fukushima, M.: On the generation of Markov processes by symmetric forms. In Proceedings of the Second Japan-USSR Symposium on Probability Theory. Lecture Notes in Mathematics 330, 46-79. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0262.60054
[30] Segal, I.: Tensor algebras over Hilbert spaces I. Trans. Amer. Math. Soc. 81, 106-134 (1952) · Zbl 0070.34003 · doi:10.1090/S0002-9947-1956-0076317-8
[31] Segal, I.E.: Distributions in Hubert space and canonical systems of operators. Trans. Amer. Math. Soc. 88, 12-41 (1958) · Zbl 0099.12104 · doi:10.1090/S0002-9947-1958-0102759-X
[32] Gross, L.: Measurable functions on Hubert space. Trans. Amer. Math. Soc. 105, 372-390 (1962) · Zbl 0178.50001 · doi:10.1090/S0002-9947-1962-0147606-6
[33] McKean, H.P., Jr.: Stochastic Integrals. New York: Academic Press 1969
[34] Gihman, I.I., Skorohod, A.V.: Stochastic differential equations. [Translated from the Russian.] Berlin: Springer 1972 · Zbl 0242.60003
[35] Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients, I, II. Comm. Pure Appl. Math. 22, 345-400 and 479-530 (1969) · Zbl 0167.43903 · doi:10.1002/cpa.3160220304
[36] Okabe, Y., Shimizu, A.: On the pathwise uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 15, 455-466 (1975) · Zbl 0353.60055
[37] Priouret, P.: Processus de diffusion et équations différentielles stochastiques. In: P.A. Meyer, P. Priouret, F. Spitzer, Ecole d’été de Probabilités de Saint Flour III, 1973. Berlin: Springer 1974
[38] Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupled P(?)2 model and other applications of high temperature expansions. In: Constructive Quantum Field Theory. Eds. G. Velo, A. Wightman. Berlin: Springer 1973
[39] Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in the P(?)2 quantum field model. Ann. of Math. 100, 585-632 (1974) · doi:10.2307/1970959
[40] Nelson, E.: Probability theory and Euclidean field theory. In: Constructive Quantum Field Theory. 94-124. Eds. G. Velo, A. Wightman. Berlin: Springer 1973
[41] Simon, B.: The P(?)2 Euclidean (Quantum) Field Theory. Princeton: Princeton Univ. Press 1974 · Zbl 1175.81146
[42] Guerra, F., Rosen, L., Simon, B.: Correlation inequalities and the mass gap in P(?)2, III. Mass gap for a class of strongly coupled theories with non zero external field. Comm. Math. Phys. 41, 19-32 (1975) · doi:10.1007/BF01608544
[43] Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for ? 2 4 quantum fields. Comm. Math. Phys. 45, 203-216 (1975) · Zbl 0956.82501 · doi:10.1007/BF01608328
[44] HØegh-Krohn, R.: A general class of quantum fields without cutoffs in two space-time dimensions. Comm. Math. Phys. 21, 244-255 (1971) · doi:10.1007/BF01647122
[45] Albeverio, S., HØegh-Krohn, R.: The Wightman axioms and the mass gap for strong interactions of exponential type in two dimensional space-time. J. Functional Analysis 16, 39-82 (1974) · Zbl 0279.60095 · doi:10.1016/0022-1236(74)90070-6
[46] Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math. Phys. 5, 332-343 (1964) · Zbl 0133.22905 · doi:10.1063/1.1704124
[47] Faris, W.G.: Self-adjoint operators. Berlin-Heidelberg-New York: Springer 1975 · Zbl 0317.47016
[48] Faris, W.: Quadratic forms and essential self-adjointness. Helv. Phys. Acta 45, 1074-1088 (1972)
[49] Faris, W., Simon, B.: Degenerate and non-degenerate ground states for Schrödinger operators. Duke Math. J. 42, 559-567 (1975) · Zbl 0339.35033 · doi:10.1215/S0012-7094-75-04251-9
[50] Dixmier, J.: Les C *-algèbres et leur representations. 2nd Ed. Paris: Gauthiers Villars 1969 · Zbl 0174.18601
[51] Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer 1976 (2nd Edition) · Zbl 0342.47009
[52] Ji?ina, M.: On regular conditional probabilities. Chek. Mat. J. 9 (84), 445-450 (1959) · Zbl 0099.12203
[53] Ji?ina, M.: Conditional probabilities on ?-algebras with countable basis. In: Selected Translations in Mathematical Statistics and Probability 2, 79-85 (1962)
[54] Pfanzagl, J., Pierlo, W.: Compact systems of sets. Lecture Notes in Mathematics 16, Berlin-Heidelberg-New York: Springer 1966 · Zbl 0161.36604
[55] Chatterji, S.D.: Les martingales et leurs applications analytiques. In: J.L. Bretagnolle, S.D. Chatterji, P.-A. Meyer, Ecole d’Eté de Probabilités: Processus Stochastiques, Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0267.60002
[56] Chatterji, S.D.: Desintegration of measures and lifting. In: Vector and Operator valued measures and applications. 69-83. New York: Academic Press 1973
[57] Dellacherie, C., Meyer, P.A.: Probabilité et potentiel. Ch. I?IV. Paris: Herman 1975 · Zbl 0323.60039
[58] Schwartz, L.: Radon measures on arbitrary topological spaces and cylindrical measures. Tata Inst. Fund. Res., Oxford 1973 · Zbl 0298.28001
[59] Schwartz, L.: Submartingales régulières à valeurs mesures et désintégrations régulières d’une mesure. J. Analyse Math. 26, 1-168, 1973 · Zbl 0312.60025 · doi:10.1007/BF02790426
[60] Levy, P.: Problémes concrets d’analyse fonctionnelle, III Partie. Paris: Gauthiers-Villars 1951
[61] Umemura, Y.: On the infinite dimensional Laplacian operator. J. Math. Kyoto Univ. 4, 477-492 (1965) · Zbl 0188.20703
[62] Albeverio, S., HØegh-Krohn, R.: Hunt processes and analytic potential theory on rigged Hilbert spaces. ZiF, Bielefeld, Preprint, Aug. 1976. (to appear in Ann. Inst. H. Poincaré B) Presented in part at the ?IV. Internat. Sympos. Information Theory?, Leningrad, June 1976, Akad. Nauk SSSR, Moscow-Leningrad, 1976
[63] Albeverio, S., HØegh-Krohn, R., Streit, L.: Energy forms, Hamiltonians and distorted Brownian paths. J. Math. Phys. 18, 907-917 (1977) · Zbl 0368.60091 · doi:10.1063/1.523359
[64] Silverstein, M.: Boundary theory for symmetric Markov processes. Berlin-Heidelberg-New York: Springer 1976 · Zbl 0331.60046
[65] Hida, T.: Stationary Stochastic Processes, Princeton: Princeton University Press 1970 · Zbl 0214.16401
[66] Gross, L.: Analytic vectors for representations of the canonical commutation relations and the non-degeneracy of ground states. J. Functional Analysis 17, 104-111 (1974) · Zbl 0285.47033 · doi:10.1016/0022-1236(74)90007-X
[67] Sloan, A.: A nonperturbative approach to non degeneracy of ground states in quantum field theory: polaron models. J. Functional Analysis 16, 161-191 (1974) · Zbl 0277.47021 · doi:10.1016/0022-1236(74)90062-7
[68] Gross, L.: Harmonic analysis on Hilbert space. Mem. Amer. Math. Soc. 46, 1-62 (1963) · Zbl 0118.32201
[69] Gross, L.: Abstract Wiener spaces. In: Proc. 5th Berkeley Sympos. on Math. Statist. Probab. 1965-66, Univ. California Press, Berkeley (1967) Vol. II1 31-42 · Zbl 0187.40903
[70] Glimm, J., Jaffe, A.: Boson quantum field models. In: Mathematics of Contemporary Physics. 77-143. Ed. R. Streater. London: Academic Press 1972
[71] Velo, G., Wightman, A., Edts.: Constructive quantum field theory. Lecture Notes in Physics. Berlin-Heidelberg-New York: Springer 1973
[72] Nelson, E.: Quantum fields and Markoff fields. In: Partial Differential Equations. Ed. D. Spencer. Sympos. Pure Math. 23, AMS, 413-420 (1973)
[73] Guerra, F.: Uniqueness of the vacuum energy density and van Hove phenomena in the infinite volume limit for 2-dimensional self-coupled Bose fields. Phys. Rev. Lett. 28, 1213 (1972) · doi:10.1103/PhysRevLett.28.1213
[74] Nelson, E.: Construction of quantum fields from Markoff fields. J. Functional Analysis 12, 97-112 (1973) · Zbl 0252.60053 · doi:10.1016/0022-1236(73)90091-8
[75] Nelson, E.: The free Markov field. J. Functional Analysis 12, 211-227 (1973) · Zbl 0273.60079 · doi:10.1016/0022-1236(73)90025-6
[76] Newman, C.: The construction of stationary two-dimensional Markoff fields with an application to quantum field theory. J. Functional Analysis 14, 44-61 (1973) · Zbl 0268.60045 · doi:10.1016/0022-1236(73)90029-3
[77] Fröhlich, J.: Schwinger functions and their generating functionals II. Advances in Math. 23, 119-180(1977) · Zbl 0345.46058 · doi:10.1016/0001-8708(77)90119-0
[78] Dobrushin, R. L., Minlos, R.: Markov fields theory and application to quantum boson fields. In: ?Probabilistic and Functional Methods in Quantum Field Theory?. Acta Univ. Wratisl. 1976
[79] Piech, M. A.: The Ornstein-Uhlenbeck semigroup in an infinite dimensional L 2-setting. J. Funct. Anal. 18, 271-285 (1975) · Zbl 0296.28009 · doi:10.1016/0022-1236(75)90016-6
[80] Segal, I.: Non linear functions of weak processes. J. Functional Analysis 4, 404-451 (1969) · Zbl 0187.39201 · doi:10.1016/0022-1236(69)90007-X
[81] Spencer, T.: Perturbation of the P(Ø)2 field Hamiltonian. J. Math. Phys. 14, 823-828 (1973) · doi:10.1063/1.1666402
[82] Glimm, J., Jaffe, A.: Øi bounds in P(Ø)2 quantum field models. Reference [89] · Zbl 0191.27101
[83] Glimm, J., Jaffe, A.: A ?Ø4 quantum field theory with cutoffs I. Phys. Rev. 176, 1945-51 (1968) · Zbl 0177.28203 · doi:10.1103/PhysRev.176.1945
[84] Jost, R.: The general Theory of Quantized Fields. AMS, Providence, 1965 · Zbl 0127.19105
[85] Streater, R., Wightman, A.: PCT, Spin and Statistics and All That. New York: Benjamin 1964 · Zbl 0135.44305
[86] Glimm, J., Jaffe, A.: On the approach to the critical point. Ann. Inst. H. Poincaré A 22, 109-122 (1975)
[87] Glimm, J., Jaffe, A., Spencer, T.: Convergent expansion about mean field theory, Parts I and II, Ann. Phys. 101, 610-630, 631-669 (1976) · doi:10.1016/0003-4916(76)90026-9
[88] Albeverio, S., HØegh-Krohn, R.: Canonical relativistic quantum fields in two space-time dimensions. Oslo Univ. Preprint 1977 · Zbl 0449.35092
[89] Les méthodes mathématiques de la théorie quantique des champs. Colloques Internationaux du CNRS, No. 248, CNRS (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.