×

zbMATH — the first resource for mathematics

Statistical mechanics of two-dimensional vortices in a bounded container. (English) Zbl 0339.76013

MSC:
76B47 Vortex flows for incompressible inviscid fluids
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. S. Lundgren and Y. B. Pointin, Phys. Fluids (to be published).
[2] Onsager, Nuovo Cimento Suppl. 6 pp 229– (1949)
[3] Montgomery, Phys. Lett. A 39 pp 7– (1972)
[4] Joyce, Phys. Lett. A 39 pp 371– (1972)
[5] Taylor, Phys. Lett. A 40 pp 1– (1972)
[6] Joyce, J. Plasma Phys. 10 pp 107– (1973)
[7] Montgomery, Phys. Fluids 17 pp 1139– (1974)
[8] Edwards, Proc. R. Soc. London Ser. A 336 pp 257– (1974)
[9] Seyler, Phys. Rev. Lett. 32 pp 515– (1974)
[10] McDonald, J. Comput. Phys. 16 pp 360– (1974)
[11] Book, Phys. Rev. Lett. 34 pp 4– (1975)
[12] D. Montgomery inPlasma Physics: Les Houches72 (Gordon and Breach, New York, 1975), p. 433.
[13] Fetter, Phys. Rev. 153 pp 285– (1967)
[14] Hess, Phys. Rev. 161 pp 189– (1967)
[15] Stauffer, Phys. Rev. 168 pp 156– (1968)
[16] Su, Phys. Fluids 16 pp 182– (1973)
[17] Kosterlitz, J. Phys. C 6 pp 1181– (1973)
[18] Lin, Proc. Natl. Acad. Sci. U.S. 27 pp 570– (1941)
[19] On the Motion of Vortices in Two Dimensions(University of Toronto, Toronto, 1943), p. 5–39.
[20] L. Landau and E. Lifshitz,Statistical Mechanics(Pergamon, New York, 1958), p. 25. · Zbl 0081.22207
[21] Y. B. Pointin, Ph.D. thesis, University of Minnesota (1976).
[22] J. D. Cole,Perturbation Methods in Applied Mathematics(Blaisdell, New York, 1968), pp. 11, 13. · Zbl 0162.12602
[23] Kraichnan, Phys. Fluids 10 pp 1417– (1967)
[24] A. I. Khinchin,Mathematical Foundation of Statistical Mechanics(Dover, New York, 1948), p. 19.
[25] Christiansen, J. Comput. Phys. 13 pp 363– (1973)
[26] Nordsieck, Math. Comput. 16 pp 22– (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.