zbMATH — the first resource for mathematics

Spectra of Cayley graphs. (English) Zbl 0338.05110

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
15A18 Eigenvalues, singular values, and eigenvectors
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
Full Text: DOI
[1] Babai, L., Isomorphism problem for a class of point symmetric structures, Acta math. acad. sci. hungar., 29, 329-336, (1977) · Zbl 0378.05035
[2] Biggs, N.L., Finite groups of automorphisms, (1971), Cambridge Univ. Press London/ New York
[3] Eggs, N.L., Algebraic graph theory, (1974), Cambridge-Univ. Press London/New York
[4] Curtis, C.W.; Reiner, I., Representation theory of finite groups and associative algebras, (1962), Interscience New York · Zbl 0131.25601
[5] Djoković, D.Z., Isomorphism problem for a special class of graphs, Acta math. acad. sci. hungar., 21, 267-270, (1970) · Zbl 0205.54504
[6] Doob, M., Eigenvalues of a graph and its imbeddings, J. combinatorial theory ser. B, 17, 244-248, (1974) · Zbl 0273.05126
[7] Elspas, B.; Turner, J., Graphs with circulant adjacency matrices, J. combinatorial theory, 9, 297-307, (1970) · Zbl 0212.29602
[8] Frobenius, G., Über die primfactoren der gruppendeterminante, S.-B. Königl. press. akad. wiss. Berlin, 1343-1382, (1896) · JFM 27.0094.01
[9] Lovász, L., Spectra of graphs with transitive groups, Period. math. hungar., 6, 191-196, (1975) · Zbl 0395.05057
[10] Mowsxowitz, A., The characteristic polynomial of a graph, J. combinatorial theory ser. B, 12, 177-193, (1972)
[11] Schwenk, A.J., Almost all trees are cospectral, (), 275-307 · Zbl 0261.05102
[12] Serre, J.-P., Représentations linéaires des groupes finis, (1967), Hermann Paris
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.