×

zbMATH — the first resource for mathematics

On “bent” functions. (English) Zbl 0336.12012
Author’s summary: Let \(P(x)\) be a function from \(\mathrm{GF}(2^n)\) to \(\mathrm{GF}(2)\). \(P(x)\) is called “bent” if all Fourier coefficients of \((-1)^{P(x)}\) are \(\pm 1\). The polynomial degree of a bent function \(P(x)\) is studied, as are the properties of the Fourier transform of \((-1)^{P(x)}\), and a connection with Hadamard matrices.
Reviewer: John H. Hodges

MSC:
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
05A15 Exact enumeration problems, generating functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] McFarland, R, A family of difference sets in noncyclic groups, J. combinatorial theory, ser. A, 15, 1-10, (1973) · Zbl 0268.05011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.