zbMATH — the first resource for mathematics

The complete optimization of a human motion. (English) Zbl 0331.92003

92B05 General biology and biomathematics
93C99 Model systems in control theory
74L15 Biomechanical solid mechanics
49L99 Hamilton-Jacobi theories
Full Text: DOI
[1] Alexander, R.S.; Johnson, P.D., Muscle stretch and theories of contraction, Am. J. physiol., 208, 412-416, (1965)
[2] Aubert, X., La relation entre la force et la vitesse d’allongement et de raccourcissement du muscle strié, Arch. int. physiol., 64, 21, (1956)
[3] Bahler, A.S., Series elastic component of Mammalian skeletal muscle, Am. J. physiol., 213, 1560-1564, (1967)
[4] Bahler, A.S., Modeling of Mammalian skeletal muscle, IEEE trans. bio-med. eng., BME-15, 249-257, (1968)
[5] Bahler, A.S.; Fales, J.T.; Zierler, K.L., The active state of Mammalian skeletal muscle, J. gen. physiol., 50, 2239-2253, (1967)
[6] Basmajian, J.V., Muscles alive, (1962), Bailliére Tindall and Cox London
[7] Beckett, R.; Chang, K., An evaluation of the kinematics of gait by minimum energy, J. biomech., 1, 147-159, (1968)
[8] Bellman, R., Dynamic programming, (1957), Princeton U.P Princeton, N.J · Zbl 0077.13605
[9] Boltyanskii, V.G., Mathematical methods of optimal control, (1971), Holt, Rinehart and Winston New York · Zbl 0249.49010
[10] Buchthal, F.; Kaiser, E., The rheology of the cross striated muscle fibre with particular reference to isotonic conditions, Dan. biol. medd., 21, 318, (1951)
[11] Chow, C.K.; Jacobson, D.H., Studies of human locomotion via optimal programming, Math. biosci., 10, 239-306, (1971) · Zbl 0215.59305
[12] Crowe, A., A mechanical model of muscle and its application to the intrafusal fibres of the Mammalian muscle spindle, J. biomech., 3, 583-592, (1970)
[13] Fenn, W.O.; March, B.S., Muscular force at different speeds of shortening, J. physiol., 85, 277-297, (1935)
[14] Fung, Y.C.B., Biomechanics: its scope, history and some problems of continuum mechanics in physiology, Appl. mech. rev., 21, 1, (1968)
[15] Glantz, S.A., A constitutive equation for the passive properties of muscle, J. biomech., 7, 137-145, (1974)
[16] Gordon, A.M.; Huxley, A.F.; Julian, F.J., The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. physiol., 184, 170-192, (1966)
[17] Green, D.G., A note on modeling muscle in physiological regulators, Med. biol. eng., 7, 41-48, (1969)
[18] Hatze, H., Optimization of human motions, (), 138-142
[19] Hatze, H., A theory of contraction and a mathematical model of striated muscle, J. theor. biol., 40, 219-246, (1973)
[20] Hatze, H., A model of skeletal muscle suitable for optimal motion problems, (), 417-422
[21] Hatze, H., A control model of skeletal muscle and its application to a time-optimal biomotion, () · Zbl 0346.92011
[22] Hatze, H., A new method for the simultaneous measurement of the moment of inertia, the damping coefficient and the location of the centre of mass of body segment s in situ, Europ. J. appl. physiol., 34, 217, (1975)
[23] Hill, A.V., The heat of shortening and the dynamic constants of muscle, Proc. roy. soc., 126B, 136-196, (1938)
[24] Hill, A.V., The series elastic component of muscle, Proc. roy. soc., B137, 237-280, (1950)
[25] Jacobson, D.H., New second-order and first-order algorithms for determining optimal control: a differential dynamic programming approach, J. opt. theory appl., 2, 411-440, (1968) · Zbl 0177.35703
[26] Jacobson, D.H.; Mayne, D.Q., Differential dynamic programming, (1970), Elsevier New York · Zbl 0223.49022
[27] Jewell, B.R.; Wilkie, D.R., An analysis of the mechanical components in Frog’s striated muscle, J. physiol., 143, 515-540, (1958)
[28] Joyce, G.C.; Rack, P.M.H., Isotonic lengthening and shortening movements of cat soleus muscle, J. physiol., 204, 475-491, (1969)
[29] Milner, M.; Quanbury, A.O.; Basmajian, J.V., Surface electric stimulation of lower limb, Arch. phys. med. rehab., 51, 540-546, (1970)
[30] Morrison, J.B., The mechanics of muscle function in locomotion, J. biomech., 3, 431-451, (1970)
[31] Needham, D.M., Machina carnis, (1971), Cambridge U.P
[32] Nubar, Y.; Contini, N., A minimal principle in biomechanics, Bull. math. biophys., 23, 377-391, (1961) · Zbl 0108.32802
[33] Ochs, S., Elements of neurophysiology, (1965), Wiley New York
[34] Polissar, M., Physical chemistry of contractile process in muscle, Am. J. physiol., 168, 766-811, (1952)
[35] Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F., The mathematical theory of optimal processes, (1962), Wiley-Interscience New York · Zbl 0102.32001
[36] Ramsey, R.W.; Street, S.F., The isometric length-tension diagram of isolated muscle fibres of the frog, J. cell. compt. physiol., 15, 11-34, (1940)
[37] Smidt, G.L., Biomechanical analysis of knee flexion and extension, J. biomech., 6, 79-92, (1973)
[38] Snyder, R.W., Large deformation of isotropic biological tissue, J. biomech., 5, 601-606, (1972)
[39] Soong, T.T.; Huang, W.N., A stochastic model for biological tissue elasticity in simple elongation, J. biomech., 6, 451-458, (1973)
[40] Sugi, H., Tension changes during and after stretch in frog muscle fibres, J. physiol., 225, 237-253, (1972)
[41] Wells, D.A., Theory and problems of Lagrangian dynamics, (1967), Schaum New York
[42] Williams, W.J.; Edwin, A.I., An electronic muscle simulator for demonstration and neuromuscular systems modelling, Med. biol. eng., 8, 521-524, (1970)
[43] Wilkie, D.R., Relation between force and velocity in human muscle, J. physiol., 110, 249-280, (1950)
[44] Wilkie, D.R., Measurement of the series elastic component at various times during a single muscle twitch, J. physiol., 134, 527-530, (1956)
[45] Yamada, H., Strength of biological materials, (1970), Williams and Wilkins Baltimore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.