×

zbMATH — the first resource for mathematics

Perturbations compactes des représentations d’un groupe dans un espace de Hilbert. (French) Zbl 0331.46051

MSC:
46L05 General theory of \(C^*\)-algebras
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
55N15 Topological \(K\)-theory
PDF BibTeX Cite
Full Text: Numdam EuDML
References:
[1] M.F. ATIYAH et F. HIRZEBRUCH , Vector bundles and homogeneous spaces , Proceedings of Symposia in Pure Mathematics, vol. 3, 7-38, Amer. Math. Soc. 1961 . MR 25 #2617 | Zbl 0108.17705 · Zbl 0108.17705
[2] N. BOURBAKI , Intégration , chap. I à IV, 2e édit., Hermann 1965 . · Zbl 0136.03404
[3] L.G. BROWN , R.G. DOUGLAS et P.A. FILLMORE , Unitary equivalence modulo the compact operators and extensions of C*-algebras , Lecture Notes in Mathematics, vol. 345, 58-128, Springer 1973 . MR 52 #1378 | Zbl 0277.46053 · Zbl 0277.46053
[4] L.G. BROWN , communication privée.
[5] V.M. BUHSTABER et A.S. MISCENKO , A K-theory on the category of infinite cell complexes , Izv. Akad. Nauk SSSR Ser. Mat. 32 ( 1968 ), 560-604 = AMS Translations of the same 2 ( 1968 ), 515-556. MR 40 #6537
[6] J.W. CALKIN , Two-sided ideals and congruences in the ring of bounded operators in Hilbert space , Ann. of Math. 42 ( 1941 ), 839-873. MR 3,208c | Zbl 0063.00692 · Zbl 0063.00692
[7] J. DIEUDONNE , Eléments d’analyse , 4, Gauthier-Villars 1971 . Zbl 0217.00101 · Zbl 0217.00101
[8] J. DIXMIER , Les C\?-algèbres et leurs représentations , 2e édit., Gauthier-Villars 1969 . Zbl 0174.18601 · Zbl 0174.18601
[9] P. DE LA HARPE et M. KAROUBI , Perturbations compactes des représentations d’un groupe dans un espace de Hilbert , C.R. Acad. Sc. Paris, Sér. A, 1975 . MR 52 #10948 | Zbl 0313.22006 · Zbl 0313.22006
[10] G. HOCHSCHILD , The structure of Lie groups , Holden-Day, 1965 . MR 34 #7696 | Zbl 0131.02702 · Zbl 0131.02702
[11] L. INGELSTAM , Real Banach algebras , Ark. Mat. 5 ( 1964 ), 239-270. MR 30 #2358 | Zbl 0149.09701 · Zbl 0149.09701
[12] K. IWASAWA , On some types of topological groups , Ann. of Math. 30 ( 1949 ), 507-558. MR 10,679a | Zbl 0034.01803 · Zbl 0034.01803
[13] N. KUIPER , The homotopy type of the unitary group of Hilbert space , Topology 3 ( 1965 ), 19-30. MR 31 #4034 | Zbl 0129.38901 · Zbl 0129.38901
[14] S. LANG , Introduction aux variétés différentiables , Dunod 1967 . MR 35 #3706 | Zbl 0154.21402 · Zbl 0154.21402
[15] C.L. OLSEN , A structure theorem for polynomially compact operators , Am. J. Math. 93, ( 1971 ), 686-698. MR 53 #8947 | Zbl 0239.47017 · Zbl 0239.47017
[16] R.S. PALAIS , Seminar on the Atiyah-Singer index theorem , Princeton Univ. Press 1965 . MR 33 #6649 | Zbl 0137.17002 · Zbl 0137.17002
[17] R.S. PALAIS , Homotopy theory of infinite dimensional manifolds , Topology 5, ( 1966 ), 1-16. MR 32 #6455 | Zbl 0138.18302 · Zbl 0138.18302
[18] C.R. PUTNAM , Commutation properties of Hilbert space operators and related topics , Springer 1967 . MR 36 #707 | Zbl 0149.35104 · Zbl 0149.35104
[19] C.E. RICKART , General theory of Banach algebras , Van Nostrand 1960 . MR 22 #5903 | Zbl 0095.09702 · Zbl 0095.09702
[20] I.M. SINGER , Uniformly continuous representations of Lie groups , Ann. of Math. 56 ( 1952 ), 242-247. MR 14,135a | Zbl 0049.35802 · Zbl 0049.35802
[21] J. STASHEFF , H-spaces from a homotopy point of view , Lecture Notes in Mathematics, vol. 161, Springer 1970 . MR 42 #5261 | Zbl 0205.27701 · Zbl 0205.27701
[22] F.J. THAYER-FABREGA , Obstructions to lifting \?-morphisms into the Calkin algebra , Tulane University, 1973 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.