×

zbMATH — the first resource for mathematics

A theory of growth. (English) Zbl 0328.92014

MSC:
92D25 Population dynamics (general)
92B05 General biology and biomathematics
34A99 General theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Quetelet, M.A., A treatise on man and the development of his faculties, (1968), Burt Franklin New York
[2] Verhulst, P.-F., Notice sur la loi que la population suit dans son accroissement, Corr. math. phys., 10, 113, (1838)
[3] Pearl, R.; Reed, L.J., On the rate of growth of the population of the united states Since 1790 and its mathematical representation, Proc. nat. acad. sci. U.S.A., G, 275, (1920)
[4] Lotka, A.J., Elements of mathematical biology, (1956), Dover New York · Zbl 0074.14404
[5] Glass, D.V., The third royal society nuffield lecture: demographic prediction, Proc. R. soc., B168, 119, (1967)
[6] Medawar, P.B., The growth, growth energy, and ageing of the Chicken’s heart, Proc. R. soc., B129, 332, (1940)
[7] von Bertalanffy, L., Untersuchungen uber die gesetzlichkeit des wachstums, VII, stoffwechseltypen und wachstumstypen, Biol. zentralbl., 61, 510, (1941)
[8] von Bertalanffy, L., Quantitative laws in metabolism and growth, Q. rev. biol., 32, 217, (1957)
[9] Richards, F.J., A flexible growth function for empirical use, J. exp. bot., 10, 290, (1959)
[10] Nelder, J.A., The Fitting of a generalization of the logistic curve, Biometrics, 17, 89, (1961) · Zbl 0099.14303
[11] Turner, M.E.; Blumenstein, B.A.; Sebaugh, J.L., A generalization of the logistic law of growth, Biometrics, 25, 577, (1969)
[12] Donaldson, H.H., A comparison of the white rat with man in respect to the growth of the entire body, boaz anniversary volume, (1906), Stechert New York
[13] Robertson, T.B., The chemical basis of growth and senescence, (1923), Lippincott Philadelphia
[14] Pruitt, K.M.; Turner, M.E.; Boackle, R.J., A kinetic model for the quantitative analysis of complement, J. theor. biol., 44, 207, (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.