×

zbMATH — the first resource for mathematics

Imbedded Markov chains in queueing systems M/G/1 and GI/M/1 with limited waiting room. (English) Zbl 0328.60050

MSC:
60K25 Queueing theory (aspects of probability theory)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bhat, U.N.: Customer overflow in queues with finite waiting space. Austral. J. Statist.7, 15–19, 1965. · Zbl 0161.37405 · doi:10.1111/j.1467-842X.1965.tb00257.x
[2] Kendall, D.G.: Some problems in the theory of dams. J. Roy. Stat. Soc., B,19, 207–212, 1957. · Zbl 0118.35502
[3] Kinney, J.R.: A transient discrete time queue with finite storage. Ann. Math. Stat.33, 130–136, 1962. · Zbl 0137.35903 · doi:10.1214/aoms/1177704718
[4] Palm, C.: Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics,44, 189 pp., 1943. · Zbl 0063.06088
[5] Prabhu, N.U. andU.N. Bhat: Some first passage problems and their application to queues. Sankhya, A,25, 281–292, 1963. · Zbl 0129.30804
[6] Riordan, J.: Stochastic Service Systems. John Wiley and Sons, Inc., 1962. · Zbl 0106.33601
[7] Takács, L.: On the limiting distribution of the number of coincidences concerning telephone traffic. Ann. Math. Stat.30, 134–141, 1959. · Zbl 0168.39002 · doi:10.1214/aoms/1177706365
[8] –: A generalization of the ballot problem and its application in the theory of queues. J. Amer. Stat. Ass.,57, 327–337, 1962. · Zbl 0109.36702 · doi:10.2307/2281642
[9] Weesakul, B.: First emptiness in a finite dam. J. Roy. Stat. Soc. B,23, 343–351, 1961. · Zbl 0116.12202
[10] Weesakul, B.: Problems in the Theory of Dams and Random Walks. Ph.D. thesis, The University of Western Australia, 1962.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.