×

zbMATH — the first resource for mathematics

The zygotic algebra for sex linkage. II. (English) Zbl 0327.92010

MSC:
92D10 Genetics and epigenetics
17D99 Other nonassociative rings and algebras
17A99 General nonassociative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Etherington, I. M. H.: Genetic algebras. Proc. Roy. Soc. Edinburgh59, 242-258 (1939). · Zbl 0027.29402
[2] Etherington, I. M. H.: Special train algebras. Quart. J. of Math. (Oxford)12, 1-8 (1941). · Zbl 0027.29401
[3] Etherington, I. M. H.: Duplication of linear algebras. Proc. Edinburgh Math. Soc. (2)6, 222-230 (1941). · Zbl 0061.05302
[4] Etherington, I. M. H.: Non associative algebra and the symbolism of genetics. Proc. Roy. Soc. EdinburghB 61, 24-42 (1941). · Zbl 0063.01290
[5] Gantmacher, F. R.: Matrizenrechnung, II. Berlin, 1959.
[6] Gonshor, H.: Special train algebras arising in genetics. Proc. Edinburgh Math. Soc. (2)12, 41-53 (1960). · Zbl 0249.17003
[7] Gonshor, H.: Special train algebras arising in genetics II. Proc. Edinburgh Math. Soc. (2)14, 333-338 (1965). · Zbl 0139.03102
[8] Gonshor, H.: Contributions to genetic algebras. Proc. Edinburgh Math. Soc. (2)17, 289-298 (1971). · Zbl 0247.92002
[9] Gonshor, H.: Contributions to genetic algebras II. Proc. Edinburgh Math. Soc. (2)18, 273-279 (1973). · Zbl 0272.92012
[10] Heuch, I.: Partial and complete sex linkage in infinite populations. J. Math. Biology1, 331-343 (1975). · Zbl 0301.92013
[11] Holgate, P.: Genetic algebras associated with sex linkage. Proc. Edinburgh Math. Soc. (2)17, 113-120 (1970). · Zbl 0259.92005
[12] Holgate, P.: Characterizations of genetic algebras. J. London Math. Soc. (2)6, 196-174 (1972). · Zbl 0261.17014
[13] Schafer, R. D.: Structure of genetic algebras. Amer. J. Math.71, 121-135 (1949). · Zbl 0034.02004
[14] Wörz-Busekros, A.: The zygotic algebra for sex linkage. J. of Math. Biology1, 37-46 (1974). · Zbl 0407.92012
[15] Wörz-Busekros, A.: Algebras arising in genetics. (To appear.) · Zbl 0431.92017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.