zbMATH — the first resource for mathematics

Reciprocal processes. (English) Zbl 0326.60033

60G05 Foundations of stochastic processes
Full Text: DOI
[1] Bernstein, S.: Sur les liaisons entre les grandeurs aléatoires, Verh. des intern. Mathematikerkongr. I Zürich 1932 · Zbl 0007.02104
[2] Beurling, A.: An automorphism of product measures, Ann. of Math. 72, 189-200 (1960) · Zbl 0091.13001 · doi:10.2307/1970151
[3] Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968 · Zbl 0172.21201
[4] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York: Academic Press 1968 · Zbl 0169.49204
[5] Doob, J.L.: Stochastic Processes. New York: Wiley 1953 · Zbl 0053.26802
[6] Dynkin, E.B.: The Theory of Markov Processes. London: Pergamon Press 1960 · Zbl 0096.11704
[7] Fortet, R.: Résolution d’un système d’équations de M. Schroedinger. J. Math. Pures Appl. IX, 83-105 (1940) · JFM 66.0498.01
[8] Jamison, B.: Reciprocal Processes: The stationary Gaussian case, Ann. Math. Statist. 41, 1624-1630 (1970) · Zbl 0248.60030 · doi:10.1214/aoms/1177696805
[9] Loève, M.: Probability Theory, (3rd ed.). Princeton: Van Nostrand 1963
[10] Loève, M.: Probability Methods in Physics I. Statistical Equilibrium (Seminar Notes) Statistical Laboratory, Department of Mathematics, University of California, Berkeley, 1949
[11] Schrödinger, E.: über die Umkehrung der Naturgesetze, Sitz. Ber. der Preuss. Akad. Wissen., Berlin Phys. Math. 144 (1931) · Zbl 0001.37503
[12] Schrödinger, E.: Theorie relativiste de l’electron et l’interpretation de la méchanique quantique, Ann. Inst. H. Poincaré 2, 269-310 (1932) · Zbl 0004.42505
[13] Slepian, D.: First passage time for a particular Gaussian process, Ann. Math. Statist. 32, 610-612 (1961) · Zbl 0113.12403 · doi:10.1214/aoms/1177705068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.