×

zbMATH — the first resource for mathematics

Epi-Archimedean groups. (English) Zbl 0319.06009

MSC:
06F15 Ordered groups
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] I. Amemiya: A general spectral theory in semi-ordered linear spaces. J. Fac. Sci. Hokkaido Uni. 12 (1953) 111-156. · Zbl 0053.25802
[2] K. A. Baker: Topological methods in the algebraic theory of vector lattices. Thesis, Harvard University 1966.
[3] S. J. Bernau: On hyper-archimedean vector lattices. Proc. Kon. Ned. Akad. V. Wetensch. 77 (1974) 40-43. · Zbl 0274.46010 · doi:10.1016/1385-7258(74)90011-0
[4] S. J. Bernau: Unique representations of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. 75 (1965) 599-631. · Zbl 0134.10802 · doi:10.1112/plms/s3-15.1.599
[5] A. Bigard: Groupes archimediens et hyper-archimediens. Séminaire Dubreil - Pisot 21 e (1967-68) no. 2. · Zbl 0186.05201 · numdam:SD_1967-1968__21_1_A2_0 · eudml:111348
[6] A. Bigard: Contribution a la théorie des groupes reticules. These University Paris, 1969.
[7] A. Bigard P. Conrad S. Wolfenstein: Compactly generated lattice-ordered groups. Math. Zeitschr., 107 (1968), 201-211. · Zbl 0182.36202 · doi:10.1007/BF01110258 · eudml:171064
[8] R. Bieter: Minimal vector lattice covers. Bull. Australian Math. Soc. 5 (1971), 411 - 413.
[9] R. Byrd P. Conrad, T. Lloyd: Characteristic subgroups of lattice-ordered groups. Trans. Amer. Math. Soc. 158 (1971) 339-371. · Zbl 0235.06006 · doi:10.2307/1995910
[10] P. Conrad D. McAlister: The completion of a lattice-ordered group. J. Australian Math. Soc. 9 (1969), 182-208. · Zbl 0172.31601 · doi:10.1017/S1446788700005760
[11] P. Conrad: Lattice-ordered groups. Lecture notes, Tulane University (1970). · Zbl 0258.06011
[12] P. Conrad, J. Diem: The ring of polar preserving endomorphisms of an abelian lattice-ordered group. Illinois J. Mth. 15 (1971) 222-240. · Zbl 0213.04002
[13] P. Conrad: The essential closure of an archimedean lattice-ordered group. Duke Math. J. 38 (1971) 151-160. · Zbl 0216.03104 · doi:10.1215/S0012-7094-71-03819-1
[14] P. Conrad: The hulls of representable l-groups and f-rings. J. Australian Math. Soc. 16 (1973) 385-415. · Zbl 0275.06025 · doi:10.1017/S1446788700015391
[15] P. Conrad: Minimal vector lattice covers. Bull. Australian Math. Soc. 4 (1971) 35-39. · Zbl 0199.34703 · doi:10.1017/S0004972700046232
[16] P. Hill: Bounded sequences of integers. · JFM 19.0165.02
[17] W. Luxemburg, L. Moore: Archimedean quotient Reisz spaces. Duke Math. J. 34 (1967) 725-740. · Zbl 0171.10501 · doi:10.1215/S0012-7094-67-03475-8
[18] L. Moore: The lifting property in archimedean Reisz spaces. Indag. Math. 32 (1970) 141-150. · Zbl 0193.08702 · doi:10.1016/S1385-7258(70)80018-X
[19] F. Pedersen: Contributions to the theory of regular subgroups and prime subgroups of lattice-ordered groups. Dissertation Tulane University (1967).
[20] J. Martinez: Archimedean-like classes of lattice-ordered groups. Trans. Math. Joe. 186 (1973) 33-49. · Zbl 0298.06022 · doi:10.2307/1996550
[21] C. Nöbeling: Verallgemeinerung einer Satzes von Hern E. Specker. Inventiones Math. 6 (1968) 41-55. · Zbl 0176.29801 · doi:10.1007/BF01389832
[22] S. Wolfenstein: Contribution a l’étude des groupes reticules. These University Paris 1970.
[23] A. Zannen: M R 651. Math. Reviews 36 (1968), 142-143.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.