×

zbMATH — the first resource for mathematics

Vektorbündel vom Rang 2 über dem \(n\)-dimensionalen komplexprojektiven Raum. (German) Zbl 0318.32027

MSC:
32L05 Holomorphic bundles and generalizations
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] W.BARTH, A.VAN DE VEN: A decomposability criterion for algebraic 2-bundles in projective spaces, Inv.math. 25, 91-106 (1974) · Zbl 0295.14006 · doi:10.1007/BF01389999
[2] : On the geometry in codimension 2 of Grassmann manifolds. In: Classification of Algebraic Varieties and Compact Complex manifolds. Lecture Notes, 412. Springer-Verlag, Berlin-Heidelberg-New York 1974
[3] G.HORROCKS: A construction for locally free sheaves, Topology 7, 117-120 (1968) · Zbl 0162.27305 · doi:10.1016/0040-9383(68)90018-9
[4] G.HORROCKS, D.MUMFORD: A rank-2 vector bundle on P4 with 15000 symmetries. Topology 12, 63-81 (1973) · Zbl 0255.14017 · doi:10.1016/0040-9383(73)90022-0
[5] S.LOJASIEWICZ: Triangulation of semi-analytic sets, Ann. Scuola Norm.Pisa 18, 449-474 (1964)
[6] M.MARUYAMA: On a family of algebraic vector bundles, Kinokuniya, Tokyo, 95-146, (1973) · Zbl 0282.14002
[7] G.MÜLICH: Familien holomorpher Vektorraumbündel über P1 und unzerlegbare holomorphe 2-Bündel über der projektiven Ebene, Dissertation 1974, Göttingen.
[8] R.L.E.SCHWARZENBERGER: Vector bundles on algebraic surfaces, Proc. London Math.Soc., (3) 11, 601-622, (1961) · Zbl 0212.26003 · doi:10.1112/plms/s3-11.1.601
[9] ?: Vector bundles on the projective plane, ibid., 623-640. · Zbl 0212.26003 · doi:10.1112/plms/s3-11.1.601
[10] A.VAN DE VEN: On uniform vector bundles, Math. Ann. 195, 245-248 (1972) · Zbl 0215.43202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.