zbMATH — the first resource for mathematics

Construction of modular p-algebras. (English) Zbl 0316.06005

06C05 Modular lattices, Desarguesian lattices
06C15 Complemented lattices, orthocomplemented lattices and posets
PDF BibTeX Cite
Full Text: DOI
[1] G. Birkhoff,Lattice theory, 3rd. Ed. (Amer. Math Soc. Colloq. Publ.25 Providence, R.I. 1967). · Zbl 0153.02501
[2] C. C. Chen and G. Grätzer,Stone lattices. I: Construction theorems, Canad. J. Math.21 (1969), 884–894. · Zbl 0184.03303
[3] G. Grätzer,Lattice Theory. First concepts and distributive lattices, W. H. Freeman and Co., 1971. · Zbl 0232.06001
[4] T. Katriňák,Die Kennzeichnung der distributiven pseudokomplementären Halbverbände, J. reine angew. Math.241 (1970), 160–179. · Zbl 0192.33503
[5] T. Katriňák,Über eine Konstruktion der distributiven pseudokomplementären Verbände, Math. Nachr.53 (1972), 85–99. · Zbl 0222.06005
[6] T. Katriňák,Subdirectly irreducible modular p-algebras, Algebra Univ.2 (1972), 166–173. · Zbl 0258.06005
[7] T. Katriňák,Primitive Klassen von modularen S-Algebren, J. reine angew. Math. 261 (1973), 55–70. · Zbl 0261.06006
[8] T. Katriňák,A new proof of the construction theorem for stone algebras, Proc. Amer. Math. Soc.40 (1973), 75–78.
[9] P. V. Venkatanarasimhan,Ideals in semi-lattices, J. Indian. Math. Soc. (N.S.)30 (1966), 47–53. · Zbl 0158.01604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.