×

zbMATH — the first resource for mathematics

An axiomatic proof technique for parallel programs. (English) Zbl 0312.68011

MSC:
68N01 General topics in the theory of software
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashcroft, E. A., Manna, Z.: Formalization of properties of parallel programs. Machine Intelligence 6. Edinburgh: University of Edinburgh Press 1971, p. 17-41 · Zbl 0263.68016
[2] Ashcroft, E. A.: Proving assertions about parallel programs. Dept of Computer Science, University of Waterloo, CS 73-01, 1973
[3] Cadiou, J. M., Levy, J. J.: Mechanical proofs about parallel processes. Proc. 14 Annual IEEE Symposium on Switching and Automata Theory, 1973, p. 34-48
[4] Clint, M.: Program proving: coroutines. Acta Informatica 2, 50-63 (1973) · doi:10.1007/BF00571463
[5] Cook, S. A.: Axiomatic and interpretive semantics for an Algol fragment. Dept. of Computer Science, Toronto, TR 79, 1975.
[6] Dijkstra, E. W. et al.: On-the-fly garbage collection: an exercise in cooperation. In Working Material for the NATO Summer School on Language Hierarchies and Interfaces, Munich, 1975 · Zbl 0347.68019
[7] Gries, D.: An exercise in proving properties of parallel programs. (Submitted to Comm. ACM) · Zbl 0361.68014
[8] Habermann, A. N.: Synchronization of communicating processes. Comm. ACM 15, 171-176 (1972) · doi:10.1145/361268.361277
[9] Hoare, C. A. R.: An axiomatic basis for computer programming. Comm. ACM 12, 576-580 (1969) · Zbl 0179.23105 · doi:10.1145/363235.363259
[10] Hoare, C. A. R.: Towards a theory of parallel programming. In: Hoare, C. A. R., Perrot, R. H. (eds.): Operating systems techniques. New York: Academic Press 1972 · Zbl 0267.68005
[11] Hoare, C. A. R., Lauer, P. E.: Consistent and complementary formal theories of the semantics of programming languages. Acta Informatica 3, 135-153 (1974) · Zbl 0264.68006
[12] Lauer, P. E.: Consistent formal theories of the semantics of programming languages. IBM Laboratory Vienna, TR 25.121, 1971
[13] Lipton, R. J.: On synchronization primitive systems. Carnegie Mellon University, PhD Thesis, 1974 · Zbl 0309.68058
[14] Lipton, R. J.: Reduction: a new method for proving properties of systems of processes. Yale Computer Science Research Report 30, 1974 · Zbl 0309.68058
[15] Newton, G.: Proving properties of interacting processes. Acta Informatica · Zbl 0303.68017
[16] Owicki, S.: Axiomatic proof techniques for parallel programs. Computer Science Dept., Cornell University, PhD thesis, 1975
[17] Rosen, B. K.: Correctness of parallel programs: the Church-Rosser approach. T. J. Watson Research Center, Yorktown Heights (N. Y.), IBM Research Report RC5107, 1974 · Zbl 0364.68006
[18] Dijkstra, E. W.: The structure of the THE multiprogramming system. Comm. ACM 11, 341-347 (1968) · Zbl 0164.18704 · doi:10.1145/363095.363143
[19] Owicki, S., Gries, D.: Axiomatic proof techniques for parallel programs II. In preparation · Zbl 0395.68015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.