×

zbMATH — the first resource for mathematics

Periodic solutions of some nonlinear, autonomous functional differential equations. II. (English) Zbl 0311.34087

MSC:
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amann, H., On the number of solutions of nonlinear equations in ordered Banach spaces, J. functional anal., 11, 346-384, (1972) · Zbl 0244.47046
[2] Bellman, R.; Cooke, K., Differential-difference equations, (1963), Academic Press New York
[3] Darbo, G., Punti uniti in trasformazioni a condiminio non compatto, (), 84-92 · Zbl 0064.35704
[4] Dugundji, J., An extension of Tietze’s theorem, Pacific J. math., 1, 353-367, (1951) · Zbl 0043.38105
[5] Grafton, R.B., A periodicity theorem for autonomous functional differential equations, J. differential equations, 6, 87-109, (1969) · Zbl 0175.38503
[6] Grafton, R.B., Periodic solutions of certain Liénard equations with delay, J. differential equations, 11, 519-527, (1972) · Zbl 0231.34063
[7] Grafton, R.B., Liénard equations with delay: existence and stability of periodic solutions, (), abstract of a talk at the Park City, Utah · Zbl 0231.34063
[8] Hale, J., Functional differential equations, (1972), Springer-Verlag New York · Zbl 0222.34003
[9] Hamilton, J.D., Noncompact mappings and cones in Banach spaces, () · Zbl 0246.47063
[10] Jones, G.S., The existence of periodic solutions of \(ƒ′(x) = −αƒ(x − 1)(1 + ƒ(x))\), J. math. anal. appl., 5, 435-450, (1962) · Zbl 0106.29504
[11] Jones, G.S., Periodic motions in Banach space and applications to functional differential equations, Contrib. differential equations, 3, 75-106, (1964)
[12] Kakutani, S.; Markus, L., On the nonlinear difference-differential equation y′(t) = (A − by(t − τ))y(t), Contrib. theory nonlinear oscillations, 4, 1-18, (1958) · Zbl 0082.30301
[13] \scJ. Kaplan and J. Yorke, “On the stability of a periodic solution of a differential-delay equation,” SIAM J. Math. Anal., to appear. · Zbl 0241.34080
[14] Krasnosel’skii, M.A., Fixed points of cone-compressing or cone-extending operators, Soviet math. dokl., 1, 1285-1288, (1960) · Zbl 0098.30902
[15] Krasnosel’skii, M.A., Positive solutions of operator equations, (1964), Noordhoff Groningen · Zbl 0121.10604
[16] Krasnosel’skii, M.A.; Zabreiko, P.P.; Krasnosel’skii, M.A.; Zabreiko, P.P., Iterations of operators and fixed points, Soviet math. dokl., Dokl. akad. nauk. SSSR, 196, 1006-1009, (1971)
[17] Kuratowski, C., Sur LES espaces complets, Fund. math., 15, 301-309, (1930) · JFM 56.1124.04
[18] Nussbaum, R.D., Asymptotic fixed point theorems for local condensing maps, Math. ann., 191, 181-195, (1971) · Zbl 0202.54004
[19] Nussbaum, R.D., The fixed point index for local condensing maps, Ann. mat. pura appl., 89, 217-258, (1971) · Zbl 0226.47031
[20] Nussbaum, R.D., Some asymptotic fixed point theorems, Trans. amer. math. soc., 171, 349-375, (1972) · Zbl 0256.47040
[21] Nussbaum, R.D., Existence and uniqueness theorems for some functional differential equations of neutral type, J. differential equations, 11, 607-623, (1972) · Zbl 0263.34070
[22] Nussbaum, R.D., Periodic solutions of some nonlinear autonomous functional differential equations, Ann. mat. pura appl., (1974), to appear · Zbl 0323.34061
[23] Sadovskii, B.N., On a fixed point principle, Functional anal. appl., 1, 74-76, (1967) · Zbl 0165.49102
[24] Schaefer, H.H., Topological vector spaces, (1971), Springer-Verlag New York · Zbl 0217.16002
[25] Steinlein, H., Zur existenz von fixpunkten bei abbildungen mit vollstetigen iterierten, ()
[26] Steinlein, H., Ein satz über den Leray-schauderschen abbildungsgrad, Math. Z., 126, 176-208, (1972) · Zbl 0223.47023
[27] \scH. Steinlein, Über die verallgemeinerten fixpunktindizes von iterierten verdichtender abbildunden, Manuscripta Math., to appear. · Zbl 0252.47065
[28] Wright, E.M., The stability of solutions of non-linear difference-differential equations, (), 18-26 · Zbl 0038.25101
[29] Wright, E.M., A nonlinear difference-differential equation, J. reine angew. math., 194, 66-87, (1955) · Zbl 0064.34203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.