zbMATH — the first resource for mathematics

On a Newton-Moser type method. (English) Zbl 0309.65020

65H10 Numerical computation of solutions to systems of equations
65Z05 Applications to the sciences
47J05 Equations involving nonlinear operators (general)
70B99 Kinematics
Full Text: DOI EuDML
[1] Cooley, J. W., Lewis P. A. W., Welch, P. D.: The fast Fourier transform algorithm and its applications. Research Report RC 1743. IBM Watson Research Center, Yorktown Heights, New York, 1967. A revised version will appear as a book · Zbl 0358.42009
[2] Goldstein, H.: Classical mechanics. Reading, Massachusetts: Addison-Wesley 1964 · Zbl 0043.18001
[3] Isaacson, E., Keller, H. B.: Analysis of numerical methods. New York: John Wiley & Sons, Inc. 1966 · Zbl 0168.13101
[4] Moser, J.: Stable and random motions in dynamical systems with special emphasis on celestial mechanics. Herman Weyl Lectures, Annals of Mathematics Studies, no. 77. Princeton, New Jersey: Princeton University Press 1973 · Zbl 0271.70009
[5] Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970 · Zbl 0241.65046
[6] Rüssmann, H.: Kleine Nenner. II. Bemerkungen zur Newtonschen Methode. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1-10 (1972) · Zbl 0255.30003
[7] Singleton, R. C.: Algorithm 338, Algol procedures for the fast Fourier transform. Comm. ACM11, 773-776 (1968) · doi:10.1145/364139.364167
[8] Singleton, R. C.: On computing the fast Fourier transform. Comm. ACM10, 647-654 (1967) · Zbl 0149.37301 · doi:10.1145/363717.363771
[9] Strassen, N.: Gaussian elimination is not optimal. Numer. Math.13, 354-356 (1969) · Zbl 0185.40101 · doi:10.1007/BF02165411
[10] Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1964 · Zbl 0121.11204
[11] Winograd, S.: A new algorithm for inner product. Research Report RC 1943, IBM Watson Research Center, Yorktown Heights, New York, 1967 · Zbl 0174.46703
[12] Zehnder, E. J.: A remark about Newton’s method. Comm. Pure Appl. Math.27, 361-366 (1974) · Zbl 0286.65026 · doi:10.1002/cpa.3160270305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.