×

zbMATH — the first resource for mathematics

Difference approximation of nonlinear evolution equations and semigroups of nonlinear operators. (English) Zbl 0305.47030

MSC:
47J05 Equations involving nonlinear operators (general)
34G99 Differential equations in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benilan, P., Solutions integrates d’equations d’evolution dans un espace de Banach, C. R. Acad. Sci. Paris 274 (1972), 47-50. · Zbl 0246.47068
[2] , Equations d’evolution dans un espace de Banach quelconque et applications, These Orsay, Universite Paris XI, U. E. R. Mathematique, 91- Orsay (France) (1972).
[3] Brezis, H., Equations et inequations non lineaires dans les espace vectoriels en dualite, Ann. Inst. Fourier, Grenoble, 18, 1 (1968), 115-175. · Zbl 0169.18602 · doi:10.5802/aif.280 · numdam:AIF_1968__18_1_115_0 · eudml:73942
[4] Brezis, H. and Pazy, A., Accretive sets and differential equations in Banach spaces, Israel J. Math. 8 (1970), 367-383. · Zbl 0209.45602 · doi:10.1007/BF02798683
[5] 9 Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Func. Anal. 9 (1972), 63-74. · Zbl 0231.47036 · doi:10.1016/0022-1236(72)90014-6
[6] Crandall, M. and Liggett, T., Generation of semigroups of nonlinear trans- formations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. · Zbl 0226.47038 · doi:10.2307/2373376
[7] Crandall, M., The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 12 (1972), 108-132. · Zbl 0246.35018 · doi:10.1007/BF02764657
[8] , A generalized domain for semigroup generators, Proc. Amer. Math. Soc. 37 (1973), 434-440. · Zbl 0285.47044 · doi:10.2307/2039457
[9] Fujita, H. and Watanabe, S., On the uniqueness and non-uniqueness of solu- tions of initial-value problems for some quasilinear parabolic equations, C. P. A. M. 21 (1968), 631-652. · Zbl 0157.17603 · doi:10.1002/cpa.3160210609
[10] Kato, T., Nonlinear evolution equations in Banach spaces, Proc. Symp. Appl. Math. XVII, Amer. Math. Soc., Providence, R. I. (1965), 50-67. · Zbl 0173.17104
[11] j Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 503-520. · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[12] Kenmochi, N., Remarks on the m-accretiveness of nonlinear operators, Hiroshima Math. J. 3 (1973), 61-68. · Zbl 0266.47056
[13] Kobayashi, Y., A note on Cauchy problems of semi-linear equations and semi- groups in Banach spaces, Ptoc. Japan Acad. 49 (1973), 514-519. · Zbl 0276.34057 · doi:10.3792/pja/1195519257
[14] Komura, Y., Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507. · Zbl 0163.38302 · doi:10.2969/jmsj/01940493
[15] Komura, Y., Differentiability of nonlinear semigroups, J. Math. Soc. Japan, 21 (1969), 375-402. · Zbl 0193.11004 · doi:10.2969/jmsj/02130375
[16] KruZkov, S., First-order quasi-linear equations in several independent variables (in Russian), Math. USSR Sbornik 10 (1970) 217-243.
[17] Martin, R. Jr., Generating an evolution system in a class of uniformly convex Banach spaces, J. Func. Anal. 11 (1972), 62-76. · Zbl 0249.47065 · doi:10.1016/0022-1236(72)90079-1
[18] Miyadera, I., Some remarks on semigroups of nonlinear operators, Tohoku Math. J. 23 (1971), 245-258. pgj 9 Generation of semigroups of nonlinear contractions, to appear. · Zbl 0219.47060 · doi:10.2748/tmj/1178242643
[19] Miyadera, I. and Oharu, S., Approximation of semigroups of nonlinear operators, Tohoku Math. J. 22 (1970), 24-47. · Zbl 0195.15001 · doi:10.2748/tmj/1178242858
[20] Oharu, S., On the generation of semigroups of nonlinear contractions, J. Math. Soc. Japan, 22 (4), (1970), 526-550. · Zbl 0198.18601 · doi:10.2969/jmsj/02240526
[21] Oharu, S. and Takahashi, T., A convergence theorem of nonlinear semigroups and its application to first-order quasilinear equations, to appear in J. Math, Soc. Japan. · Zbl 0265.47052 · doi:10.2969/jmsj/02610124
[22] Richtmyer, R. and Morton, K., Difference methods for initial-value problems, 2nd. ed., Int. Sci. Publisher, (1967). · Zbl 0155.47502
[23] Takahashi, T. and Oharu, S., Approximation of operator semigroups in a Banach space, Tohoku Math. J. 24 (4), (1972), 505-528. · Zbl 0281.47024 · doi:10.2748/tmj/1178241442
[24] Webb, G., Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Func. Anal. 10 (1972), 191-203. pfi] 5 Nonlinear perturbations of linear accretive operators in Banach spaces, Israel J. Math. 12 (1972), 237-248. · Zbl 0245.47052 · doi:10.1016/0022-1236(72)90048-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.