×

zbMATH — the first resource for mathematics

Partial and complete sex linkage in infinite populations. (English) Zbl 0301.92013

MSC:
92D10 Genetics and epigenetics
60E05 Probability distributions: general theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bennett, J. H.: Random mating and sex linkage. J. Theoret. Biol. 4, 28–36 (1963).
[2] Etherington, I. M. H.: Genetic algebras. Proc. Roy. Soc. Edinburgh 59, 242–258 (1939). · Zbl 0027.29402
[3] Geiringer, H.: On the probability theory of linkage in Mendelian heredity. Ann. Math. Stat. 15, 25–57 (1944). · Zbl 0063.01560
[4] Gonshor, H.: Contributions to genetic algebras II. Proc. Edinburgh Math. Soc. (2) 18, 273–279 (1973). · Zbl 0272.92012
[5] Heuch, I.: k loci linked to a sex factor in haploid individuals. Biometr. Z. 13, 57–68 (1972a). · Zbl 0236.92002
[6] Heuch, I.: Sequences in genetic algebras for overlapping generations. Proc. Edinburgh Math. Soc.(2) 18, 19–29 (1972b). · Zbl 0244.17017
[7] Holgate, P.: Genetic algebras associated with sex linkage. Proc. Edinburgh Math. Soc. (2) 17, 113–120 (1970). · Zbl 0259.92005
[8] Lyubich, Yu. I.: Basic concepts and theorems of the evolutionary genetics of free populations. Uspehi Mat. Nauk 26 (5), 51–116 (1971) (Russian). English translation: Russian Math. Surveys 26 (5), 51–123 (1971).
[9] Reiersøl, O.: Genetic algebras studied recursively and by means of differential operators. Math. Scand. 10, 25–44 (1962). · Zbl 0286.17006
[10] Strobeck, C.: Heterozygosity in pin-thrum plants or with partial sex linkage. Genetics 72, 667–678 (1972).
[11] Tukey, J. W.: Causation, regression and path analysis. In: Statistics and Mathematics in Biology (Kempthorne, O., Bancroft, T. A., Gowen, J. W., Lush, J. L., eds.), pp. 35–66. Ames: The Iowa State College Press 1954.
[12] Whitehouse, H. L. K.: Multiple-allelomorph heterothallism in the fungi. New Phytol. 48, 212–244 (1949).
[13] Winge, Ø.: The location of eighteen genes in Lebistes reticulatus. J. Genet. 18, 1–43 (1927).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.