×

zbMATH — the first resource for mathematics

Properties and calculation of transmission zeros of linear multivariable systems. (English) Zbl 0299.93018

MSC:
93C05 Linear systems in control theory
93C99 Model systems in control theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Rosenbrock, H.H., State-space and multivariable theory, (1970), Nelson · Zbl 0246.93010
[2] Kwakernaak, H.; Sivan, R., Linear optimal control systems, (), 41-42
[3] Morse, A.S., Structural invariants of linear multivariable systems, SIAM J. control, 11, 446-465, (1973) · Zbl 0259.93011
[4] Wang, S.H.; Davison, E.J., Canonical forms of linear multivariable systems, (), April 1972 · Zbl 0326.93009
[5] Moore, B.C.; S’lverman, L.M., Equivalent characterizations of zeros in multivariable systems, ()
[6] Rosenbrock, H.H., The zeros of a system, International J. control, 18, 297-299, (1973) · Zbl 0262.93014
[7] Desoer, C.A.; Schulman, J.D., Zeros and poles of matrix transfer functions and their dynamic interpretation, IEEE trans. circuit theory, CAS-21, 3-8, (1974)
[8] Wolovich, W.A., On determining the zeros of statespace systems, IEEE trans. automatic control, AC-18, 542-544, (1973) · Zbl 0266.93016
[9] Davison, E.J., The output control of linear time-invariant multivariable systems with unmeasurable arbitrary disturbances, IEEE trans. automatic control, AC-17, 621-630, (1972) · Zbl 0258.49018
[10] Davison, E.J., A computational method for finding the zeros of a multivariable linear time-invariant system, Automatica, 6, 481-484, (1970) · Zbl 0207.18302
[11] Wang, S.H.; Davison, E.J., A new invertibility criterion for linear multivariable systems, IEEE trans. automatic control, AC-18, 538-539, (1973) · Zbl 0266.93019
[12] Sain, M.K.; Massey, J.L., Invertibility of linear time-invariant dynamic systems, IEEE trans. automatic control, AC-14, 141-149, (1969)
[13] Silverman, L.M., Inversion of multivariable linear systems, IEEE trans. automatic control, AC-14, 270-276, (1969)
[14] Davison, E.J.; Wang, S.H., Properties of linear time-invariant multivariable systems subject to arbitrary output and state feedback, IEEE trans. automatic control, AC-18, 24-32, (1973) · Zbl 0262.93018
[15] Silverman, L.M.; Payne, H.J., Input-output structure of linear systems with application to the decoupling problem, SIAM J. control, 9, 199-233, (1971) · Zbl 0242.93030
[16] Wang, S.H., Relationship between triangular decoupling and invertiblity of linear multivariable systems, Int. J. control, 15, 395-399, (1972) · Zbl 0251.93015
[17] Fabian, E.; Wonhow, W.M., Service solvability of the decoupling problem, (January 1973), Dept. of Electrical Engineering, University of Toronto, Control Systems Report No. 7301
[18] Davison, E.J.; Chow, S.G., Perfect control in linear time-invariant multivariable systems: the control inequality principle, () · Zbl 0265.93018
[19] Davison, E.J., The feedforward and feedback control of a general servomechanism problem—parts I, II, () · Zbl 0419.93046
[20] Krall, A.M., Stability techniques for continuous linear systems, (1967), Gordon and Breach, Theorems 6.3.9, 6.3.10 · Zbl 0183.16001
[21] Luenberger, D.G., Canonical forms for linear multivariable systems, IEEE trans. automatic control, AC-12, 290-293, (1967)
[22] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Oxford Press · Zbl 0258.65037
[23] Davison, E.J., The systematic design of control systems for large multivariable linear systems, Automatica, 9, 441-452, (1973) · Zbl 0256.93025
[24] {\scH. H. Rosenbrock}: Structural properties of first-order dynamic systems. International J. Control, (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.