zbMATH — the first resource for mathematics

High order approximation to Sturm-Liouville eigenvalues. (English) Zbl 0298.65058

65L10 Numerical solution of boundary value problems involving ordinary differential equations
Full Text: DOI EuDML
[1] Birkhoff, G., Fix, G.: Accurate eigenvalue computations for elliptic problems. In Numerical Solution of Field Problems in Continuum Physics, G. Birkhoff and R. Varga, eds., American Mathematical Society, Providence, 1970, pp. 111-151 · Zbl 0231.65087
[2] Canosa, J., Gomes de Olivera, R.: A new method for the solution of the Schrodinger equation. J. Computational Phys.5, 188-207 (1970) · Zbl 0195.17302 · doi:10.1016/0021-9991(70)90059-8
[3] Collatz, L.: The Numerical Treatment of Differential Equations. Berlin: Springer 1966 · Zbl 0173.17702
[4] Davis, P., Rabinowitz, P.: Numerical Integration. Boston: Ginn-Blaisdell, 1967 · Zbl 0154.17802
[5] de Boor, C., Swartz, B.: Collocation at Gaussian points, SIAM J. Numer. Anal.10, 582-606 (1973) · Zbl 0232.65065 · doi:10.1137/0710052
[6] Gordon, R.: Quantum scattering using piecewise analytic solutions, in Methods in Computational Physics, Vol. 10. B. Adler, ed., New York: Academic Press 1971, pp. 81-109
[7] Pruess, S.: Estimating the eigenvalues of Sturm-Liouville problems by approximating the differential equation, SIAM J. Numer. Anal.,10, 55-68 (1973) · Zbl 0259.65078 · doi:10.1137/0710008
[8] Pruess, S.: Solving linear bundary value problems by approximating the coefficients. Math. Comp.27, 551-562 (1973) · Zbl 0293.65057 · doi:10.1090/S0025-5718-1973-0371100-1
[9] Pruess, S.: Higher order approximations to Sturm-Liouville eigenvalues. Technical Report No. 283, The University of New Mexico, Albuquerque, 1973 · Zbl 0259.65078
[10] Wilkinson, J.: The Algebraic Eigenvalue Problem. Oxford: Oxford University Press 1965 · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.