×

zbMATH — the first resource for mathematics

On the Freudenthal’s construction of exceptional Lie algebras. (English) Zbl 0298.17010

MSC:
17B25 Exceptional (super)algebras
17B99 Lie algebras and Lie superalgebras
17B20 Simple, semisimple, reductive (super)algebras
17B35 Universal enveloping (super)algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. R. Faulkner and J. C. Ferrar: On the structure of symplectic ternary algebras. Nederl. Akad. Wetensch. Proc. Ser. A75=Indag. Math., 34, 247-256 (1972). · Zbl 0248.17004
[2] H. Freudenthal: Beziehungen der E7 und E8 zur Oktavenebene. I. Nederl. Akad. Wetensch. Proc. Ser. A57=Indag. Math., 16, 218-230 (1954). · Zbl 0055.02001
[3] H. Freudenthal: Beziehungen der E7 und E8 zur Oktavenebene. II. Nederl. Akad. Wetensch. Proc. Ser. A57=Indag. Math., 16, 363-368 (1954). · Zbl 0058.26101
[4] H. Freudenthal: Beziehungen der E7 und E8 zur Oktavenebene. VIII. Nederl. Akad. Wetensch. Proc. Ser. A62=Indag. Math., 21, 447-465 (1959). · Zbl 0128.15302
[5] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc, 72, 217-242 (1952). JSTOR: · Zbl 0046.03404 · doi:10.2307/1990753 · links.jstor.org
[6] K. Meyberg: Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren. Math. Z., 115, 58-78 (1970). · Zbl 0186.34501 · doi:10.1007/BF01109749 · eudml:171335
[7] K. Meyberg: Eine Theorie der Freudenthalschen Tripelsysteme. I, II. Nederl. Akad. Wetensch. Proc. Ser. A71=Indag. Math., 30, 162-174, 175-190 (1968). · Zbl 0261.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.