×

zbMATH — the first resource for mathematics

Bounds on positive solutions of linear diophantine equations. (English) Zbl 0291.10014

MSC:
11D04 Linear Diophantine equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245 – 375 (German). , https://doi.org/10.1007/BF02559591 Horst Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116 – 148 (German). , https://doi.org/10.1007/BF01210965 Wolfgang Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z. 76 (1961), 427 – 467 (German). · Zbl 0111.18803 · doi:10.1007/BF01210988 · doi.org
[2] A. J. Goldman and A. W. Tucker, Polyhedral convex cones, Linear equalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N. J., 1956, pp. 19 – 40. · Zbl 0072.37504
[3] Olvi L. Mangasarian, Nonlinear programming, McGraw-Hill Book Co., New York-London-Sydney, 1969. · Zbl 0126.36505
[4] Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1966. · Zbl 0154.04002
[5] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245 – 375 (German). , https://doi.org/10.1007/BF02559591 Horst Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116 – 148 (German). , https://doi.org/10.1007/BF01210965 Wolfgang Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z. 76 (1961), 427 – 467 (German). · Zbl 0111.18803 · doi:10.1007/BF01210988 · doi.org
[6] L. B. Treybig, Bounds in piecewise linear topology, Trans. Amer. Math. Soc. 201 (1975), 383 – 405. · Zbl 0301.57009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.