×

zbMATH — the first resource for mathematics

The transversality of a general translate. (English) Zbl 0288.14014

MSC:
14M15 Grassmannians, Schubert varieties, flag manifolds
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
PDF BibTeX Cite
Full Text: Numdam EuDML
References:
[1] M. Golubitsky and V. Guillemin : Stable mappings and their singularities . Graduate texts in Mathematicas 14 Springer-Verlag (1973). · Zbl 0294.58004
[2] A. Grothendieck and J. Dieudonné : Eléments de géométrie algébrique . Chapitre IV, 2eme, 3eme, 4e parties, Publ. Math. No. 24, 28, 32 IHES (1965, 1966, 1967) (cited EGA IV2, EGA IV3, EGA IV4). | · Zbl 0203.23301
[3] M. Hochster : Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay . J. Algebra 25 (1973) 40-57. · Zbl 0256.14024
[4] W.V.D. Hodge and D. Pedoe : Methods of algebraic geometry . Volume II, Cambridge University Press (1952). · Zbl 0048.14502
[5] G. Kempf : Schubert methods with an application to algebraic curves . Lecture notes, Mathematisch Centrum Amsterdam (1971). · Zbl 0223.14018
[6] S. Kleiman : Geometry on grassmannians and applications to splitting bundles and smoothing cycles, in the ’Zariski volume’ . Publ. Math. IHES 36 (1969) 281-297. · Zbl 0208.48501
[7] D. Laksov : The arithmetic Cohen Macaulay character of Schubert schemes . Acta Math. 129 (1972) 1-9. · Zbl 0233.14012
[8] C. Musili : Postulation formula for Schubert varieties . J. Indian Math. Soc. 36 (1972) 143-171. · Zbl 0277.14021
[9] T. Svanes : Coherent cohomology on Schubert subschemes of flag schemes and applications . (to appear). · Zbl 0308.14008
[10] O. Zariski : The theorem of Bertini on the variable singular points of a linear system of varieties . TAMS, Vol. 56, No. 1, pp. 130-140, July 1944. · Zbl 0061.33101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.