×

zbMATH — the first resource for mathematics

Regular elements of finite reflection groups. (English) Zbl 0287.20043

MSC:
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
15A18 Eigenvalues, singular values, and eigenvectors
17B20 Simple, semisimple, reductive (super)algebras
20G15 Linear algebraic groups over arbitrary fields
20G05 Representation theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Benard, M.: On the Schur indices of characters of the exceptional Weyl groups. Ann. of Math.94, 89-107 (1971) · Zbl 0216.09202
[2] Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801
[3] Borel, A.: Seminar in algebraic groups and related finite groups. Lecture Notes in Mathematics131, Berlin-Heidelberg-New York: Springer 1970 · Zbl 0192.36201
[4] Bourbaki, N.: Groupes et algèbres de Lie. Chap. IV, V, VI. Paris: Hermann 1968
[5] Carter, R. W.: Conjugacy classes in the Weyl groups. Comp. Math.25, 1-59 (1972) · Zbl 0254.17005
[6] Carter, R. W., Elkington, G. B.: A note on the parametrization of conjugacy classes. J. Alg.20, 350-354 (1972) · Zbl 0239.20053
[7] Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math.77, 778-782 (1955) · Zbl 0065.26103
[8] Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections. Duke Math. J.18, 765-782 (1951) · Zbl 0044.25603
[9] Dynkin, E. B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. Ser.2, 6 (1957), 111-245 (=Math. Sbornik N.S.30, 349-462 (1952)) · Zbl 0048.01701
[10] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math.81, 973-1032 (1959) · Zbl 0099.25603
[11] Kostant, B.: Lie group representations in polynomial rings. Am. J. Math.85, 327-404 (1963) · Zbl 0124.26802
[12] Mumford, D.: Introduction to algebraic geometry (mimeographed)
[13] Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann.77, 89-92 (1916) · JFM 45.0198.01
[14] Samuel, P.: Méthodes d’algèbre abstraite en géométrie algébrique. Erg. d. Math.4. Berlin-Heidelberg-New York: Springer 1955
[15] Shephard, G. C., Todd, J. A.: Finite unitary reflection groups. Can. J. Math.6, 274-304 (1954) · Zbl 0055.14305
[16] Solomon, L.: Invariants of finite reflection groups. Nagoya Math. J.22, 57-64 (1963) · Zbl 0117.27104
[17] Springer, T. A.: Some arithmetical results on semi-simple Lie algebras. Publ. Math. I.H.E.S.30, 115-141 (1966) · Zbl 0156.27002
[18] Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc.112, 392-400 (1964) · Zbl 0196.39202
[19] Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. I.H.E.S.25, 49-80 (1965) · Zbl 0136.30002
[20] Steinberg, R.: Lectures on Chevalley groups. Yale University, 1967 · Zbl 0164.34302
[21] Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc.80 (1968) · Zbl 0164.02902
[22] Weil, A.: Foundations of algebraic geometry. Am. Math. Soc. Colloq. Publ. 29 (2nd ed.), 1962 · Zbl 0168.18701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.