×

zbMATH — the first resource for mathematics

The smallest C\(^*\)-algebra for canonical commutation relations. (English) Zbl 0284.46039

MSC:
46L05 General theory of \(C^*\)-algebras
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
46K05 General theory of topological algebras with involution
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Slawny J.: On factor representations and the C*-algebra of canonical communications relations. Preprint (1971). · Zbl 0219.46047
[2] Manuceau, J.: Ann. Inst. Henri PoincaréVIII (2), 139 (1968).
[3] Rocca, F., Sirugue, M., Testard, D.: Commun. math. Phys.19, 119 (1970).
[4] Grossmann, A.: Private communications.
[5] Naimark, M. A.: Normed rings. Groningen, The Netherlands: 1966. P. Noordhoff N. W.
[6] Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien. Paris: 1969. Gauthier-Villars. · Zbl 0175.43801
[7] Doplicher, S., Kastler, D., Stormer, E.: J. of Functional Analysis3 (3), 419 (1969). · Zbl 0174.44604
[8] Stormer, E.: Asymptotically Abelian systems. Cargèse Lectures in Physics (Vol. 4). New York: 1969. Gordon and Breach.
[9] Takesaki, M.: Tomita’s theory of modular Hilbert algebras and its applications. Berlin-Heidelberg-New York: Springer 1970. · Zbl 0193.42502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.