×

zbMATH — the first resource for mathematics

A revised simplex method for linear multiple objective programs. (English) Zbl 0281.90045

MSC:
90C05 Linear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K.J. Arrow, E.W. Barankin and D. Blackwell, ”Admissible points of convex sets”, in:Contributions to the theory of games, Eds. H.W. Kuhn and A.W. Tucker (Princeton Univ. Press, Princeton, N.J., 1953) 87–91. · Zbl 0050.14203
[2] A. Charnes and W.W. Cooper,Management models and industrial applications of linear programming, Vol. 1 (Wiley, New York, 1961) 299–310. · Zbl 0107.37004
[3] A.M. Geoffrion, ”Strictly concave parametric programming, Part I”,Management Science 13 (3) (1966) 244–253. · Zbl 0143.42604 · doi:10.1287/mnsc.13.3.244
[4] A.M. Geoffrion, ”Proper efficiency and the theory of vector maximization”,Journal of Mathematical Analysis and Applications 22 (1968) 618–630. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[5] S. Karlin,Mathematical methods and theory in games, programming and economics, Vol. I (Addison-Wesley, Reading, Mass., 1959) 216–218.
[6] T. Koopmans, ”Analysis of production as an efficient combination of activities”, in:Activity analysis of production and allocation, Cowles Commission Monograph Vol. 13, (Wiley, New York, 1951) 33–97. · Zbl 0045.09506
[7] H.W. Kuhn and A.W. Tucker, ”Nonlinear programming”, in:Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley, Calif., 1950) 481–492.
[8] O. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969) 27–35. · Zbl 0194.20201
[9] M. Markowitz, ”The optimization of a quadratic function subject to linear constraints”,Naval Research Logistics Quarterly 3 (1, 2) (1956) 111–133. · doi:10.1002/nav.3800030110
[10] J. Philip, ”Algorithms for the vector maximization problem”,Mathematical Programming 2 (1972) 207–229. · Zbl 0288.90052 · doi:10.1007/BF01584543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.